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The McEliece cryptosystem

Public-key cryptosystem based on algebraic coding theory
[McEliece1978].

It adopts generator matrices as private and public keys.

Security lies in the difficulty of decoding a large linear code
with no visible structure, that is an NP complete problem
[Berlekamp1978].

Advantages

The system is faster than competing solutions, like RSA.

Drawbacks

It has large public keys and low transmission rate.
I McEliece, R.J., ”A public-key cryptosystem based on algebraic coding theory.” DSN Progress Report (1978)

114–116
I Berlekamp, E., McEliece, R., van Tilborg, H., ”On the inherent intractability of certain coding problems.”

IEEE Trans. Inform. Theory 24 (May 1978) 384–386
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The McEliece cryptosystem (2)

The original version adopts Goppa codes with length
n = 1024, dimension k = 524, and minimum distance dmin of
at least 101.

The key size is n × k bits = 67072 bytes.

The transmission rate is k/n ≈ 0.5.

Several attempts have been made for adopting other codes,
able to overcome the system’s drawbacks...

...but they always compromised the system security
[Niederreiter1986], [Gaborit2005].

I Niederreiter, H., ”Knapsack-type cryptosystems and algebraic coding theory.” Probl. Contr. and Inform.
Theory 15 (1986) 159–166

I Gaborit, P., ”Shorter keys for code based cryptography.” Proc. WCC 2005, Bergen, Norway (March 2005)
81–90
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Low-Density Parity-Check Codes

LDPC codes are state-of-art forward error correcting codes.

They approach the theoretical Shannon limit [Richardson2001].

Each code is defined as the kernel of a sparse (n − k)× n
binary matrix H.

Belief Propagation decoding exploits the sparse nature of their
matrices to implement very efficient and low-complexity
decoding.

Quasi-cyclic (QC) LDPC codes are a particular class of LDPC
codes, characterized by structured H matrices that allow
low-complexity encoding too.

I Richardson, T., Urbanke, R., ”The capacity of low-density parity-check codes under message-passing
decoding.” IEEE Trans. Inform. Theory 47 (February 2001) 599–618
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QC-LDPC Codes

We consider a particular class of QC-LDPC codes, for which

Matrix H

is formed by a row {H0, . . . ,Hn0−1} of n0 binary circulant blocks
with size p and row/column weight dv .

The generator matrix G

is formed by a k × k identity matrix I (k = k0 · p), followed by a
column of k0 binary circulant blocks with size p. If Hn0−1 is
non-singular,

G =

I

(
H−1

n0−1 ·H0

)T(
H−1

n0−1 ·H1

)T
...(

H−1
n0−1 ·Hn0−2

)T

 .

Marco Baldi, Marco Bodrato McEliece Cryptosystem based on QC-LDPC codes



Improved McEliece cryptosystem based on QC-LDPC codes
Fast computations

Performance

Preliminaries
The previous proposal, and the OTD attacks
The new proposals

McEliece cryptosystem based on QC-LDPC Codes

In the original system (adopting Goppa codes) it suffices to
hide the chosen code through a permutation.

When adopting LDPC codes, the sparse nature of the H
matrix must be hidden to avoid attacks based on it.

We have recently proposed a QC-LDPC based variant that
adopts a ”dense” transformation [Baldi2007].

This causes an ”error spreading” phenomenon during
decryption...

...but it is compensated by the high correction capability of
LDPC codes.

This version is able to counter all the classic attacks.

I Baldi, M., Chiaraluce, F., ”Cryptanalysis of a new instance of McEliece cryptosystem based on QC-LDPC
codes.” Proc. IEEE ISIT 2007, Nice, France (June 2007) 2591–2595
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McEliece cryptosystem based on QC-LDPC Codes (2)

Bob randomly chooses a code in a family of (n0, dv , p)
QC-LDPC codes by selecting its parity-check matrix H.

Bob produces a generator matrix G in reduced echelon form.

Bob randomly chooses a k × k non-singular matrix S and a
sparse n × n non-singular matrix Q with row/column weight
m.

Bob computes the public key as G′ = S−1 · G ·Q−1.

G′ can be seen as a k0 × n0 matrix with entries in the ring of
polynomials R = GF(2)[x ]/(xp + 1), so it can be simply
described by the set of polynomial coefficients.

Alice uses G′ for encoding her message, before adding t ′

intentional errors: x = u · G′ + e = c + e.

Bob uses H (the private key) for LDPC decoding.
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McEliece cryptosystem based on QC-LDPC Codes (3)
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System Parameters

In the previous version of the cryptosystem we fixed n0 = 4,
dv = 13, p = 4032, m = 7 and t ′ = 27.

Such choice allows to resist all the standard attacks.

Both S and Q were chosen sparse, with non-null blocks
having row/column weight m, and

Q =


Q0 0 0 0
0 Q1 0 0

0 0
. . . 0

0 0 0 Qn0−1

 .
This, together with its low density, gave raise to a new attack
formulated by Otmani et al. (OTD) [Otmani2008].

I Otmani, A., Tillich, J.P., Dallot, L., ”Cryptanalysis of two McEliece cryptosystems based on quasi-cyclic
codes.” Proc. SCC 2008, Beijing, China (April 2008)
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Rationale of the OTD attacks

By selecting the first k columns of G′, an eavesdropper can
obtain

G′≤k = S−1 ·


Q−1

0 0 . . . 0
0 Q−1

1 . . . 0
...

...
. . .

...

0 0 . . . Q−1
n0−2

 .
By inverting G′≤k and considering its block at position (i , j),
he can obtain QiSi ,j , that corresponds to the polynomial

gi ,j(x) = qi (x) · si ,j(x) mod (xp + 1) .

Both Qi and Si ,j are sparse, so it is highly probable that
gi ,j(x) has exactly m2 non-null coefficients and its support
contains at least one shift x la · qi (x), 0 ≤ la ≤ p − 1.
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OTD attack strategies

1 OTD1: requires on average 250 binary operations

2 OTD2: requires on average 236 binary operations

3 OTD3: requires on average 232 binary operations

Countermeasure

The OTD attack strategies rely on the fact that both S and
Q are sparse and that Q has block-diagonal form.

They can be countered by adopting dense S matrices, without
altering the remaining system parameters.

For example, S could have density about 0.5, with odd weight
blocks along the main diagonal, and even weight blocks
elsewhere, to ensure non-singularity.
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Rationale of the new proposals

With dense S matrices the eavesdropper cannot obtain Qi

and Si ,j , even knowing QiSi ,j .

To preserve the ability of correcting all the intentional errors,
Q is kept sparse (with row/column weight m).

The choice of a dense S influences complexity of the decoding
stage, that, however, can be reduced by resorting to efficient
computation algorithms for circulant matrices.

The OTD attacks demonstrate that the choice of Q in
block-diagonal form is weak, so we avoid it in the new
versions of the cryptosystem.
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First new variant

The first new variant adopts almost the same parameters of the
previous one:

p = 4096

n0 = 4⇒ n = 16384

k0 = 3⇒ k = 12288⇒ R = 0.75

dv = 13, m = 7 and t ′ = 27

- Q is obtained by randomly permuting the block rows and
columns of a matrix of 4× 4 circulant blocks with weight 2, except
those along the main diagonal, that have weight 1.
- The absence of the block-diagonal structure in Q prevents from
attacking each single block, and attacking a whole row or column
would require p

(p
2

)3 ≈ 281 attempts.
- S is dense, with row/column weight ≈ k/2.
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Second new variant

The second new variant adopts a new choice of the parameters
that ensures increased security:

p = 8192

n0 = 3⇒ n = 24576

k0 = 2⇒ k = 16384⇒ R = 0.67

dv = 13, m = 11 and t ′ = 40

- It is obtained at the cost of a slightly decreased transmission rate.
- Q is obtained by randomly permuting the block rows and
columns of a matrix of 3× 3 circulant blocks with weight 4, except
those along the main diagonal, that have weight 3.
- Attacking a whole row or column of Q would require(p

4

)2(p
3

)
≈ 2131 attempts.

- S is dense, with row/column weight ≈ k/2.
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Vector-matrix: näıve evaluations

Both encryption and decryption require a vector-matrix product.
With the usual näıve algorithm, the product of a vector with k
entries by a k × n matrix requires:

k · n products,

k · n additions.

Since the matrix is fixed, we can hard-code the products and
compute only the needed additions, those corresponding with a 1
entry. With dense matrices, about half of them.
Then we assume k·n

2 operations.
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Circulant matrices: definition

Toeplitz square matrices entries in F = GF(m)

A =


a0 a1 · · · ap−2 ap−1

a−1 a0 a1 · · · ap−2
...

. . .
. . .

. . .
...

a2−p · · · a−1 a0 a1

a1−p a2−p · · · a−1 a0


is circulant iff ∀i , ai = ai−p = ai+p.

Let X be the circulant matrix with ai = δ1(i).

Isomorphism between circulants and R = F[x ]/(xp + 1)

Circulants 3
∑p−1

i=0 αiX
i ←→

∑p−1
i=0 αix

i ∈ F[x ]/(xp + 1)
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Vector-circulant multiplication is a polynomial product

Multiplication of a p-sized vector by a p × p circulant matrix is
equivalent to multiplication of two polynomials modulo xp + 1.
This means we can use fast product.

Many algorithms are known for polynomial multiplication.

Näıve O(p2)

Karatsuba (Toom-2) O(plog2 3)

Toom-Cook-k O(plogk 2k−1)

Schönhage-FFT/Cantor O(p log p log log p)

Each one has a different complexity, and a different range where it
is the fastest. see thresholds
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Vector-circulant multiplication is a polynomial product

Multiplication of a p-sized vector by a p × p circulant matrix is
equivalent to multiplication of two polynomials modulo xp + 1.
This means we can use fast product.

Many algorithms are known for polynomial multiplication.

Näıve O(p2)

Karatsuba (Toom-2) O(plog2 3)

Toom-Cook-k O(plogk 2k−1)

Schönhage-FFT/Cantor O(p log p log log p)

Karatsuba or Winograd can be used

Splitting in two can be easily implemented.
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Vector-circulant multiplication is a polynomial product

Multiplication of a p-sized vector by a p × p circulant matrix is
equivalent to multiplication of two polynomials modulo xp + 1.
This means we can use fast product.

Many algorithms are known for polynomial multiplication.

Näıve O(p2)

Karatsuba (Toom-2) O(plog2 3)

Toom-Cook-k O(plogk 2k−1)

Schönhage-FFT/Cantor O(p log p log log p)

Toom-Cook strategy has been extended to binary polynomials

Splitting in three or four parts is trickier, but faster in our range.
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Vector-circulant multiplication is a polynomial product

Multiplication of a p-sized vector by a p × p circulant matrix is
equivalent to multiplication of two polynomials modulo xp + 1.
This means we can use fast product.

Many algorithms are known for polynomial multiplication.

Näıve O(p2)

Karatsuba (Toom-2) O(plog2 3)

Toom-Cook-k O(plogk 2k−1)

Schönhage-FFT/Cantor O(p log p log log p)

Schönhage-FFT or Cantor are inefficient for our sizes

We are not interested in asymptotic complexity. . .
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Fast product is very effective on matrices

All the fast polynomial products use three phases:

1 Evaluations (both operands) Overhead

2 Point-wise products

3 Interpolation Overhead

Every product requires all the three phases.
12 products  24 evaluations, 12 mid-products, 12 interpolations.

(
v1 v2 v3

)M1,1 M1,2 M1,3 M1,4

M2,1 M2,2 M2,3 M2,4

M3,1 M3,2 M3,3 M3,4

 =
(
r1 r2 r3 r4

)
The matrix is fixed and pre-evaluated, interpolation is linear:
12 products  3 evaluations, 12 mid-products, 4 interpolations.
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Winograd’s: a simpler approach
Use the fact that circulant matrices are Toeplitz

Circulant matrices are Toeplitz’s; can be decomposed as shown:(
T0 T1

T2 T0

)
=

(
I 0 I
0 I I

)T1 − T0 0 0
0 T2 − T0 0
0 0 T0

0 I
I 0
I I


Advantages

Very simple to implement

Asymptotically equivalent to Toom-2, with a smaller overhead

Drawbacks

Does not work with odd-sized matrices

Cannot be mixed with Toom-Cook
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Winograd and Toom-Cook: complexity comparisons

Number of bit operations

p dim Näıve Winograd Toom-Cook

8192 2× 3 201 326 592 14 106 224 12 684 343

4096 3× 4 100 663 296 8 103 706 8 074 444

5555 3× 4 92 574 075 N.A. 7 310 809

The Toom-Cook approach is the fastest (in a wide range), and can
be used for all sizes.

We can suggest Winograd for test implementations, it is fast
enough, and it is far simpler.
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Encryption and decryption complexity

Encryption complexity is due to encoding of the cleartext and
to addition of intentional errors:

Cenc = Cmul

(
u · G′

)
+ n.

The decryption complexity can expressed as:

Cdec = Cmul (x ·Q) + CSPA + Cmul

(
u′ · S

)
.

CSPA is the number of operations required for LDPC decoding
through the sum-product algorithm [Hu2001]:

CSPA = Iave · n [q (8dv + 12R − 11) + dv ]

with Iave average number of decoding iterations and q number
of quantization bits used inside the decoder.

I Hu, X.-Y., Eleftheriou, E., Arnold, D.-M., Dholakia, A., ”Efficient implementations of the sum-product
algorithm for decoding LDPC codes.” Proc. IEEE GLOBECOM ’01, San Antonio, TX (Nov. 2001) 1036–1036E
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McElieceNiederreiter RSA QC-LDPC QC-LDPC
(original) McEliece 1McEliece 2

Key Size (bytes) 67072 32750 256 6144 6144

Information Bits 524 276 1024 12288 16384

Transmission Rate 0.5117 0.5681 1 0.75 0.6667

Enc Ops per bit 514 50 2402 658 776

Dec Ops per bit 5140 7863 738112 4678 8901

The new versions are secure against the known attacks.

The lowest work factor is achieved by local deduction attacks
known as ”information set decoding”.

Such attacks require more than 270 and 280 operations for the
two new variants, respectively.

The McEliece and Niederreiter cryptosystems with their
standard parameters reach lower security levels.
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Conclusions

We have shown that the adoption of QC-LDPC codes in the
McEliece cryptosystem can help overcoming its drawbacks.

Our previous proposal, however, was exposed to newly
developed total break attacks.

We have proposed two new variants of the cryptosystem
secure against such attacks.

We have reported complexity estimates based on the
Toom-Cook method for polynomials in GF(2)[x ], that permits
to reduce the encryption and decryption complexity of the
proposed cryptosystems.

They can be seen as a trade-off between the original McEliece
cryptosystem and other widespread solutions, like RSA.
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Open problems

There is still no supporting proof of security for coding based
cryptographic techniques.

The error correction capability of LDPC codes over the
”McEliece” channel has been assessed through numerical
simulations, but total error correction is not guaranteed as for
Goppa codes.

Thank you very much for your kind attention
Presentation will be available on the web:

http://bodrato.it/papers/#SCN2008,
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Exact division
detailed only for D = xn + 1 ∈ GF(2)[x ]

We start from an element GF(2)[x ] 3 a = qD, whose degree is
deg(a) = d + n. We want the quotient q. Compute with 2kn 6 d .

q ≡ a · (1 + xn) · (1 + x2n) · · · (1 + x2kn) (mod xd+1)

Division can be performed limb by limb starting from less
significant one, obtaining linear complexity.

Division limb by limb obtain linear complexity

for i = 0 . . . d/w
ai ← ai · D−1 (mod xw )
ai+1 ← ai+1 − ai ·D

xw = ai+1 − ai >> (w − n)

Thanks to Jörg Arndt for suggesting a clean description
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Thresholds for polynomial product
NTL-based plain implementations

Range where each algorithm is the fastest

Algorithm operand degree (bits) asymptotic

Näıve < 190 O(d2)
Karatsuba 190 . . . 360 O(d log2 3)
Toom-3 360 . . . 8,000 O(d log3 5)
Toom-4 8,000 . . . 15,000 O(d log4 7)
Schönhage-FFT 15,000 < O(d log d log log d)

Those values highly depend on implementation, architecture. . .

Algorithms in blue where implemented by Paul Zimmermann, the
others by Marco Bodrato
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