
A Strassen-like Matrix Multiplication Suited for
Squaring and Highest Power Computation?

Marco Bodrato

Centro “Vito Volterra” – Università di Roma Tor Vergata – Italy

Abstract. Strassen method is not the asymptotically fastest known ma-
trix multiplication algorithm, but it is the most widely used for large ma-
trices on finite fields. Since his manuscript was published, a number of
variants have been proposed with various addition complexities. Here we
describe a new one. The new variant is as good as those already known
for a simple matrix multiplication, but can save operations either when
more than two matrices are to be multiplied or for squaring. Moreover
it can be proved optimal for this tasks. The biggest gain is shown for
nth-power computation, in this scenario the additive complexity can be
halved, with respect to original Strassen’s.

Keywords: Matrix, Strassen, fast multiplication, optimal squaring, ex-
act computation.

1 Introduction

We analyse Strassen method [Str69] for matrix multiplication, because it is the
most widely used, even if is not the asymptotically fastest known. The original
Strassen algorithm and the Winograd variant use the same number of multipli-
cations. They differ on the number of additions or subtractions, needing respec-
tively 18 and 15 for a 2× 2 matrix. None of the two algorithms has the minimal
number of additions when used for squaring, so other similar combinations are
investigated.

We propose here a new sequence, optimal for squaring. We then investigate
a method for further reducing the number of linear combinations needed either
for the consecutive multiplications of three or more matrices, or required by
nth-power computation or even by more general polynomials on matrices.

With the proposed algorithm, each squaring or multiplication during power
computation requires only 9 additions for a 2×2 matrix. Moreover, when squar-
ing, some of the sub-multiplications are squares, so that optimised squaring on
the ring of elements, or for very small matrices, can be used.

While matrix product and Strassen algorithm can be applied to rectangular
matrices, this paper focus on square matrices, because only for this kind of
matrices squaring and higher power computation make sense. Anyway the main
sequence is valid for rectangular matrices too, and standard peeling/padding
techniques can be used for odd-sized one [DHSS94,HLJJ+96].
? Part of the project “Algoritmi ottimali per polinomi di matrici su campi finiti”



2 Marco Bodrato (on-line version http: // bodrato. it/ papers/ #CIVV2008 )

1.1 Applications

Strassen’s and Strassen-like methods for matrix multiplication are considered not
stable numerically; although some corrections are possible, the main application
for a fast matrix multiplication algorithm is that of matrices on exact rings. We
mean matrices over finite fields, integers, rationals, polynomials over finite fields
and so on.

To obtain formulas valid on every finite field we started searching combina-
tions valid for F2. Then we extended the sequences found this way to char 0
testing the same formulas with ±1 ∈ Z in the places where we had 1 ∈ F2. Since
the obtained algorithms require only additions, subtractions and (non commu-
tative) multiplications, they will work on any ring. In particular they will work
on the ring of matrices, and can be used recursively.

2 Matrices Product

Given two d×d matrices A,B, computation of the product C = AB, with a näıve
implementation, directly applying the definition Cij =

∑
k AikBkj , requires d3

multiplications and d3 − d2 additions.
In particular we will study the 2× 2 case, so we will have:(

C11C12

C21C22

)
=
(
A11A12

A21A22

)(
B11B12

B21B22

)
(1)

In the appendix §Q only, we will briefly discuss the commutative case. For the
rest of the paper we will consider the non-commutative scenario, because for big
2k×2k matrices the Aij , Bij are not ring elements, but k×k matrices themselves.

2.1 Strassen-like

While näıve algorithm requires Θ(d3) operations, asymptotically faster algo-
rithms exist. The first one, proposed in 1969 by Strassen [Str69], has the lower
complexity Θ(dlog2 7) = O(d2,8074). This is not the “fastest” known, but it’s the
most widely used, because asymptotically faster algorithms are efficient for very
huge matrices only.

The basic idea consists in an optimisation for the product of 2× 2 matrices,
requiring only 7 instead of 8 multiplications. When recursively used it gives the
product of 2k × 2k matrices using 7k ring multiplications, instead of 23k = 8k.

When applied to 2×2 split matrices, Strassen method requires also 18 linear
operations (additions/subtractions) on the sub-matrices. This additive complex-
ity was reduced to 15 operations by a variant credited to Winograd, and this
number of operations was shown to be the minimum [Pro76]. Since either the
7 multiplications and the 15 linear operations where the proved minimum, the
search for other variants stopped.

http://bodrato.it/
http://bodrato.it/papers/#CIVV2008


Strassen-like matrix multiplication for power computation 3

2.2 New Proposed Sequence

We propose here a new variant, requiring the minimum number of operations,
as Winograd’s, and with an additional property: it is optimal for squaring too
and can save operations for consecutive (three or more matrices) products. We
start describing it for the simple product.

At first four linear pre-combinations are required for each one of the two
operands:

(2.s)


S1=A22 +A12

S2=A22 −A21

S3=S2 +A12 = A22 −A21 +A12

S4=S3 −A11 = A22 −A21 +A12 −A11

(2.t)


T1=B22 +B12

T2=B22 −B21

T3=T2 +B12

T4=T3 −B11

(2)

then the seven products and the final seven post-combinations:

(3.p)



P1 = S1T1

P2 = S2T2

P3 = S3T3

P4 = A11B11

P5 = A12B21

P6 = S4B12

P7 = A21T4

(3.c)



U1 = P3 + P5

U2 = P1 − U1

U3 = U1 − P2

C11 = P4 + P5

C12 = U3 − P6

C21 = U2 − P7

C22 = P2 + U2

(3)

The eight inputs Aij , Bij and the four output Cij satisfy equation (1).
This proposed method requires 7 multiplications and 4 + 4 + 7 = 15 linear

combinations, this was proved the best possible [Pro76], but is not better than
already known sequences.

The sequence where found with a computer-aided search within all possible
linear combinations in F2, with one condition: the preparation phases (2.s) and
(2.t) should be the same. Only 6 good combinations were found (Strassen’s is
one of them). The one chosen here is the best one for squaring. There is only
one equivalent sequence, which can be obtained from the above by swapping
X11 ↔ X22 and X12 ↔ X21 for X = A, X = B and X = C.

Then all the liftings of the sequence in F2 up to Z, lifting 1 to +1 or −1,
has been tried, again with the condition (2.s)≡(2.t). The result is the sequence
above, valid for any finite field and in general for any ring.

2.3 Operations for Squaring

At first we remember that matrix squaring has the same asymptotic behaviour
as matrix multiplication. One side of the equivalence is obvious, because we can
compute A2 = A·A with a multiplication, the other side is easy too, by observing
that (

0 A
B 0

)2

=
(
AB 0
0 BA

)
.

Nevertheless we can hope to save at least some operations when dealing with
only one operand.



4 Marco Bodrato (on-line version http: // bodrato. it/ papers/ #CIVV2008 )

When we use formulas (2) and (3) for squaring, so that we have A = B, we can
observe that ∀i, Si = Ti. Moreover the first four products P1 . . . P4 are themselves
squares, while the last three products share the three operands: A12, A21 and S4.
We can use only (2.s), then substitute (3.p) with:

P1 = S2
1

P2 = S2
2

P3 = S2
3

P4 = A2
11

P5 = A12A21

P6 = S4A12

P7 = A21S4

(4)

The squaring operation, then, requires half the pre-combination, since it operates
on one matrix only. This was true for the original Strassen method too, but the
new sequence is shorter.

Shared Triple Product When computing the three products A12A21, A21S4,
S4A12, the linear pre-combinations described in (2.s) can be computed once for
each matrix, this means one for each product. Thus the linear complexity of this
product is the same as linear complexity of squaring.

It’s not hard to see that this triple product can be used recursively. This
means that the square of a matrix require half the pre-combinations than a
general product, and this is true for any recursion level.

3 Operations Collapsing

When computing consecutive products, we can further reduce the number of
linear combinations, collating the post-combination sequence of partial results
with the pre-combination needed for the next multiplication.

Let us take the simplest example: compute the product of three matrices
ABC. We can compute Ã = AB, then ÃC, but we do not really need to explicitly
compute all the elements of Ã, which is only a partial result, we can modify our
sequence to obtain exactly, and only, the values needed for the next product.

The sequence below collapses formulas (3.c) and (2.s) skipping the unneeded
value Ã22, as a result we save 2 operations.



Ã11

Ã21

Ã12

S̃1

S̃2

S̃3

S̃4


=



0 0 0 1 1 0 0
1 0 -1 0 -1 0 -1
0 -1 1 0 1 -1 0
1 0 0 0 0 -1 0
0 1 0 0 0 0 1
0 0 1 0 1 -1 1

-1 -1 1 0 1 0 0





P1

P2

P3

P4

P5

P6

P7


:



Ã11 =P4 + P5

Ã12 =P3 − P2 − P6 + P5

S̃2 =P2 + P7

S̃1 =P1 − P6

S̃3 = S̃2 + Ã12

Ã21 = S̃1 − S̃3

S̃4 = S̃3 − Ã11

 (5.c)

 (5.s)

(5)

http://bodrato.it/
http://bodrato.it/papers/#CIVV2008


Strassen-like matrix multiplication for power computation 5

The above consideration can be generalised to any matrix chain product
∏n

i=1Ai,
saving (n− 2) · 2 combinations, but any such product should be re-implemented
from scratch. So we need a more general approach.

3.1 Intermediate Representation

Equation (5) splits in two sub-sequences: (5.c) and (5.s). The first one computes
four values from the products Pi, while the last three values only depend on
already computed ones. This allows us to only compute the first four values,

then store the intermediate result as:

(
Ã11 Ã12

S̃2 S̃1

)
.

This intermediate representation is tightly linked with the standard one, and
we can switch from one another simply applying the invertible linear function:
ψ1. This function only requires one addition and one subtraction, both in-place;
the same occurs for its inverse that requires two subtractions.

ψ1

((
A11 A12

A21 A22

))
=
(

A11 A12

A22 −A21 A22 +A12

)
ψ−1

1

((
A11 A12

S2 S1

))
=
(

A11 A12

(S1−A12)− S2 (S1−A12)

)
Since ψ1 is linear, it commutes with linear combinations:

∀A,B ∈Md×d(F);∀α, β ∈ F : ψ(αA± βB) = αψ(A)± βψ(B) (6)

When Strassen’s algorithm is used with more levels of recursion, we can also
recursively define deeper transform ψn:

ψn+1

((
A11 A12

A21 A22

))
=
(
ψn(A11) ψn(A12)
ψn(A21) ψn(A22)

)
Working on blocks, those functions commute with one another:

∀A,B ∈Md×d;∀a, b ≤ log2 d : ψa ◦ ψb = ψb ◦ ψa

Any composition ψ =©n
i=1ψi is linear, and equation (6) is always valid.

Carefully using one or both pre-combinations (2.s) and (5.s), the products
(3.p), then one of the post-combinations (3.c) or (5.c), it is possible to build
procedures taking in input the couple ψa(A), ψb(B) and giving the output ψc(C),
for any needed a, b, c.

Each transform ψn requires additions/subtractions on half the elements of
the matrix, and saves one fourth of linear operation each time the operand is
used in a product. So it is worth transforming each operand used more than
twice for a sequence of operations.

For example, to compute A7 = (A2 ·A)2 ·A, we should start with ψ(A).
Every intermediate result should be stored ψ-transformed, because this saves

at least two operations. Conversely, the final result of the computation should
be obtained with the original post-sequence (3.c), which is shorter than (5.c)
followed by ψ−1.



6 Marco Bodrato (on-line version http: // bodrato. it/ papers/ #CIVV2008 )

3.2 Optimality of the Intermediate Representation

By the results in [KKB88] we have linear complexity δ(s) of the pre-combination
phase (for one matrix) and the linear complexity δ(c) of the post-combination
satisfy the equation: δ(c) = δ(s) + 3.

Infact Strassen’s had δ(sS) = 5 and 2δ(sS) + δ(cS) = 3δ(sS) + 3 = 18;
Winograd reached δ(sW ) = 4 and 3δ(sW ) + 3 = 15, while the intermediate
representation allows δ(s) = 3 and 3δ(s) + 3 = 12, saving 3 other operations.

Further reductions are not possible, because the seven left-side (resp. right-
side) operands in the multiplications (3.p) can not repeat [Pro76]. If we start
from the four elements of a 2× 2 matrix, at least 3 operations are necessary to
obtain 7 unique combinations.

4 Computing the nth-Power

There are basically two ways to compute the power An of a generic matrix:
- binary expansion of the exponent, then a clever sequence of the two oper-

ations: M ←M2 ; M ← AM2.
- evaluate the polynomial pn ≡ xn (mod P ) on the matrix, where P is the

minimal polynomial of A.
Which one is faster, depends on many parameters and implementation de-

tails, and is out of the scope of this paper. Here we will focus on the possible
savings in linear operations for both algorithms by using ψ(A), the intermediate
representation of A.

4.1 Binary Algorithm

Strassen’s original algorithm would require 18 linear combination for every prod-
uct or squaring.

If we use the intermediate representation for every partial result, each squar-
ing would cost only 9 combinations. If we have ψ(A) computed in a first step,
every product would require 2×(5.s)+(5.c)= 12 combinations.

The best results can be reached if we store all the results of the first compu-
tation from the sequence (2.s) and we keep them till the end of exponentiation.
In this case also the products will require only 9 combinations, so that we halved
the linear operations needed with Strassen’s strategy.

But remember, we did not change the number of multiplications.

4.2 Polynomial Shortcut

Since the transformation to and from the intermediate representation is linear,
we can use it for partial results inside any evaluation algorithm using only mul-
tiplications and linear combinations.

We expect at least as many products as the degree d = deg(P ) of the
polynomial, then we expect to save at least 3d linear operations with the ψ-
representation.

http://bodrato.it/
http://bodrato.it/papers/#CIVV2008


Strassen-like matrix multiplication for power computation 7

5 Conclusions

We have shown, in §2.2, a new sequence for Strassen-like matrix multiplication
[Str69]. This new sequence is optimal with respect to multiplicative and additive
complexity for generic 2× 2 matrices and for recursive use.

As a bonus, with the same sequence, half of the preliminary operations can
be saved when the product involves one operand only. The squaring case also
has the maximal number of recursive multiplications being themselves squares.
Again the new sequence is optimal.

The sequence can be shortened even more with some linear pre-computations.
We have shown an in-place transform for matrices, requiring 2 operations per
recursion level, after which any product costs 3 operations less. Transformed and
standard matrices can be mixed

We then propose the use of our new sequence for every implementation of
Strassen’s matrix multiplication on finite fields. It is not worse than the widely
used Winograd sequence for simple multiplications, but it can give performance
gain for squaring and more complex products.

Acknowledgements

The author thanks Maria Caterina Tarantino, for her support and encourage-
ment for writing this paper; and Alberto Zanoni for proofreading.

References

BBB+06. Christian Batut, Karim Belabas, Dominique Bernardi, Henri Cohen, and
Michel Olivier. User’s Guide to PARI/GP, 2.4.2 edition, 2006.

DHSS94. Craig C. Douglas, Michael Heroux, Gordon Slishman, and Roger M. Smith.
GEMMW: A portable level 3 BLAS Winograd variant of Strassen’s matrix–
matrix multiply algorithm. Journal of Computational Physics, 110(1):1–10,
1994.

DPZ07. Jean-Guillaume Dumas, Clment Pernet, and Wei Zhou. Memory efficient
scheduling of Strassen-Winograd’s matrix multiplication algorithm. Tech-
nical Report 0707.2347v3, arXiv, 2007.

HLJJ+96. Steven Huss-Lederman, Elaine M. Jacobson, Jeremy R. Johnson, Anna
Tsao, and Thomas Turnbull. Strassen’s algorithm for matrix multiplication:
Modeling, analysis, and implementation. Technical Report CCS-TR-96-17,
Center for Computing Sciences, November 15 1996. available on-line.

KKB88. Michael Kaminski, David G. Kirkpatrick, and Nader H. Bshouty. Addition
requirements for matrix and transpose matrix product. Journal of Algo-
rithms, 9:354–364, 1988.

Mez07. Marc Mezzarobba. Génération automatique de procédures numériques pour
les fonctions D-finies. PhD thesis, Master parisien de recherche en infor-
matique, August 2007.

Pro76. Robert L. Probert. On the additive complexity of matrix multiplication.
SIAM Journal of Computation, 5(2):187–203, June 1976.

Str69. Volker Strassen. Gaussian elimination is not optimal. Numer. Math.,
13:354–356, 1969.

Wak70. Abraham Waksman. On Winograd’s algorithm for inner products. IEEE
Transactions on Computers, 19(4):360–361, April 1970.

http://ln.bodrato.it/wn34psZ


8 Marco Bodrato (on-line version http: // bodrato. it/ papers/ #CIVV2008 )

Q Small Commutative Matrix Squaring

For very small matrices, recursive methods are often too expensive, particularly
when we can use commutativity of the base ring.

For 2× 2 matrices, we trivially have(
a b
c d

)2

=
(
a2 + bc b(a+ d)
c(a+ d) d2 + bc

)
This easy formula can be generalised with the small program in figure 1, requiring

d squares, d3 − d2 −
(
d

2

)
products and d3 − d2 −

(
d

2

)
additions. (7)

Input : d× d matrix A
Output : d× d matrix Q

for i = 1 . . . d˛̨
Qi,i ← (Ai,i)

2

for i = 1 . . . d− 1˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨

for j = i + 1 . . . d˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨

c← Ai,j ·Aj,i

Qi,i ← Qi,i + c
Qj,j ← Qj,j + c
c← Ai,i + Aj,j

Qi,j ← Qi,j + Ai,j · c
Qj,i ← Qj,i + Aj,i · c
for k = 1 . . . d, k 6= i ∧ k 6= j˛̨̨̨

Qj,i ← Qj,i + Aj,k ·Ak,i

Qi,j ← Qi,j + Ai,k ·Ak,j

Fig. 1. Näıve implementation of squaring in the commutative case

This trivial optimisation should be compared to Waksman multiplication
[Wak70] for d × d matrices, and to recursive use of Strassen-like algorithm. It
wins only for dimension 2 and 3. Nevertheless its combined use with one or
more recursions of the sequence proposed in §2.2 can give the best algorithm
for squaring small matrices with respect to the total number of ring products
required. In the table below we compare our matrix squaring with the best known
algorithms to compute the product of two matrices.

Dimension 2 3 4 5 6 7 8 9 16
Product [Mez07, p.30] 7 23 46 93 141 235 316 473 2212
Näıve squaring (7) 5 18 46 95 171 280 428 621 3736
Combined squaring 5 18 41 93 141 235 302 473 2156

Number of ring products required for squaring small matrices.

http://bodrato.it/
http://bodrato.it/papers/#CIVV2008


Strassen-like matrix multiplication for power computation 9

In particular we should notice that:
- for the 5×5 squaring, Waksman requires 93 products, equation (7) proposes

90 products plus 5 squares, which may be better in some cases.
- for the 6 × 6 case, Waksman needs 141 multiplications (sums ∼= 480), our

new sequence splits in four 3 × 3 squares (using (7)), and three 3 × 3 products
(Waksman), totalling 23 ·3+15 ·4 = 129 products and 3 ·4 = 12 squarings; same
number of operations (fewer sums ∼= 390), but may be better “quality”.

R Other Results in F2

There are some obvious transformations which allows us to take a Strassen-like
matrix multiplication algorithm and to obtain another.

Let J be the matrix J =
(

0 1
1 0

)
: the two transformations A ·B = (BT ·AT )T

and A ·B = J ((JAJ) · (JBJ)) J (which is the symmetry we made mention of in
§2.2), are the only two preserving both the kind of operations and the existing
symmetry.

By adding other transformations not requiring additional linear operations,
namely A · B = J((JA) · B) = (A · (BJ))J , we can group all the possible
Strassen-like sequences in four equivalence classes:

1. one containing the proposed sequence, plus Winograd’s and 6 other ones;
2. one containing the original Strassen’s, plus 3 others;
3. one with A11 ·(B11+B12); (A12+A22)·(B12+B22); (A12+A21+A22)·(B12+B21);
A12 ·(B21+B22); (A21+A22) ·B21; A21 ·(B11+B21); (A11+A12+A21+A22) ·B12,
and 15 more sequences

4. and the one represented by (A11+A12+A22)·(B11+B12+B22); A11 ·(B12+B22);
A22 ·B21; (A11+A12+A21+A22)·(B11+B12); (A12+A22)·(B11+B12+B21+B22);
A21 ·B11; (A11+A12) ·B22, containing also 7 other sequences.

Totalling only 36 possible combinations in F2. Obviously every multiplication
sequence in characteristic zero must be a lifting of one of them.

S Scheduling

As already said in §R, the new proposal is in the same class of Winograd’s, so that
the scheduling work done for that sequence [HLJJ+96,DPZ07] can be recycled
here; the result is that it should be possible to substitute the new proposed one
to any similar code already implemented, and it will not be slower.

For example, the schedule proposed in [DHSS94], with two temporaries only,
can be revisited for the sequence seen in §2.2 as follows:

Wkn ←B22 +B12

Wmk←A22 +A12

C21 ←Wmk ·Wkn

Wmk←A22 −A21

Wkn ←B22 −B21

C22 ←Wmk ·Wkn

Wkn ←Wkn +B12

Wmk←Wmk +A12

C11 ←Wmk ·Wkn

Wmk←Wmk −A11

C12 ←Wmk ·B12

C12 ←C12 + C22

Wmk←A12 ·B21

C11 ←C11 +Wmk

C12 ←C11 − C12

C11 ←C21 − C11

Wkn ←Wkn −B11

C21 ←A21 ·Wkn

C21←C11 − C21

C22←C22 + C11

C11←A11 ·B11

C11←C11 +Wmk



10 Marco Bodrato (on-line version http: // bodrato. it/ papers/ #CIVV2008 )

T Timings

Some simple timing test where done on straightforward implementations of ma-
trix squaring in GP-Pari [BBB+06]. We compare the internal cubic GP-Pari
implementation (Version 2.3.2, with GMP 4.2.1) and a GP-Pari script imple-
menting Strassen-Winograd’s (“SW”, one level only) scheduled as in [DHSS94]
with another scripts using the new proposed sequence described in §2.2 (one re-
cursion level), then one implementing ψ(A)→ ψ(A2) which is the building brick
for exponentiation, and a last one using also fig.1 for 2×2 (or 3×3) matrices. The
last column gives percentage difference between ψ and non-ψ implementation.

Time for squaring in ms, for a random d× d matrix with entries in Fp.
Prime p dimension GP-Pari SW §2.2 + ψ + §Q ψ%

2 4× 4 0.0251 0.1167 0.0926 0.0853 0.4118 8.6
2 8× 8 0.1305 0.3635 0.2867 0.2703 n.a. 6.1
2 16× 16 0.8407 1.4694 1.2208 1.1625 n.a. 5.0
2 32× 32 5.7166 7.7358 6.8055 6.5900 n.a. 3.3
2 64× 64 42.4831 50.4117 46.4033 45.4916 n.a. 2.0
2 128× 128 334.0690 330.9655 312.3103 308.9310 n.a. 1.1

17 4× 4 0.0342 0.1328 0.1010 0.0941 0.4144 7.3
17 32× 32 9.1563 10.8326 9.9207 9.6982 n.a. 2.3
17 64× 64 70.8103 75.2069 70.5172 69.7586 n.a. 1.1

65537 4× 4 0.0354 0.1323 0.1012 0.0944 0.4145 7.2
65537 32× 32 9.5294 11.2689 10.2857 10.0672 n.a. 2.2
65537 64× 64 74.2142 77.7857 73.7142 72.5000 n.a. 1.7
∼= 232 4× 4 0.0600 0.1598 0.1278 0.1195 0.4436 6.9
∼= 232 16× 16 2.8718 3.3760 3.0840 3.0105 n.a. 2.4
∼= 232 32× 32 22.2372 22.7796 21.6610 21.3220 n.a. 1.6
∼= 264 4× 4 0.0749 0.1773 0.1432 0.1345 0.4553 6.5
∼= 264 16× 16 3.8781 4.3109 4.0210 3.9453 n.a. 1.9
∼= 264 32× 32 30.4137 30.3103 29.0000 28.6896 n.a. 1.1
∼= 2256 4× 4 0.1605 0.2703 0.2289 0.2205 0.5424 3.8
∼= 2256 8× 8 1.1449 1.3655 1.2521 1.2247 n.a. 2.2
∼= 2256 16× 16 9.0000 9.1186 8.7118 8.6101 n.a. 1.2
∼= 2512 4× 4 0.3121 0.4129 0.3691 0.3589 0.6620 2.8
∼= 2512 8× 8 2.3655 2.4579 2.3277 2.2941 n.a. 1.5
∼= 21024 4× 4 0.8063 0.8679 0.8151 0.8041 1.0209 1.4
∼= 21024 6× 6 2.6686 2.6338 2.5354 2.5126 2.8667 0.9
∼= 22048 4× 4 2.4768 2.3109 2.2436 2.2226 2.1617 0.9
∼= 22048 6× 6 8.0450 7.4573 7.3104 7.2729 6.7914 0.5
∼= 28192 4× 4 22.2100 19.9916 19.8151 19.7310 16.1092 0.4
∼= 265536 4× 4 561.5714 499.0000 496.7857 494.7143 393.4286 0.4

Tested with GP-Pari 2.3.2 using GMP 4.2.1 on a 1.4GHz Pentium-M.

http://bodrato.it/
http://bodrato.it/papers/#CIVV2008


THIS PAGE IS NOT PART OF THE ARTICLE1

BibTEX entry

@TechReport{Bodrato:CIVV2008,
author = {Marco Bodrato},
title = {A {Strassen}-like Matrix Multiplication
Suited for Squaring and Highest Power Computation},
institution = {Centro "Vito Volterra", Universit\‘a di Roma "Tor Vergata"},
year = {2008},
number = {622},
pages = {10},
month = {December},
note = {\url{http://bodrato.it/papers/\#CIVV2008}},

}

1 Paper edited with Emacs-21 and LATEX-3.0 on a Debian GNU/Linux box.



12 Marco Bodrato (on-line version http: // bodrato. it/ papers/ #CIVV2008 )

Π Paraleipómena2

Π.1 Scheduling for addmul with Odd-Sized Matrices [January the 3rd, 2009]

Another operation often useful is to compute the product and add it up to an
existing matrix. In general we can use a linear combination C ← α ·C+β ·A×B
with two coefficients α, β in the algebra of entries.

The same scheduling proposed in [DAN07] can be adapted here, with almost
the same notation. The algorithm below computes C+ = A ∗B or better(

C0 C1

C2 C3

)
←
(
C0 C1

C2 C3

)
+
(
A0 A1

A2 A3

)
×
(
B0 B1

B2 B3

)
.

It uses also the operation C− = A ∗B, so it should be generalised to be used in
practical programming. The operands have sizes σ(A) = m × n, σ(B) = n × p,
σ(C) = m×p. If any size is odd, matrices are split in such a way that A0, B0, C0

are the biggest, for example σ(A0) = dm
2 e × d

n
2 e , σ(A3) = bm

2 c × b
n
2 c.

Definitions for both matrix addition and matrix product must be relaxed
somehow, cropping or zero-padding operands as required by result size.

Computation Operand Sizes
S = A3 −A2 σ(S) = bm

2 c × d
n
2 e

T = B3 −B2 σ(T ) = bn
2 c × d

p
2e

U = S ∗ T σ(U) = bm
2 c × b

p
2c, σ(S) = bm

2 c × b
n
2 c, σ(T ) = bn

2 c × b
p
2c

C3+ = U
C1− = U
U = A1 ∗B2 σ(U) = dm

2 e × d
p
2e

C0+ = U
C0+ = A0 ∗B0

S = S +A1 σ(S) = dm
2 e × d

n
2 e

T = T +B1 σ(T ) = dn
2 e × d

p
2e

U+ = S ∗ T
C1+ = U
S = A0 − S
C1+ = S ∗B1 σ(S ∗B1) = dm

2 e × b
p
2c

T = B0 − T
C2+ = A2 ∗ T σ(A2 ∗ T ) = bm

2 c × d
p
2e

S = A3 +A1 σ(S) = bm
2 c × b

n
2 c

T = B3 +B1 σ(T ) = bn
2 c × b

p
2c

U− = S ∗ T σ(U) = dm
2 e × b

p
2c

C2 = C2 − U
C3 = C3 − U

References

DAN07. Paolo D’Alberto and Alexandru Nicolau. Adaptive Winograd’s matrix mul-
tiplications. ACM Transactions on Mathematical Software, Vol. 36, No. 1, 2008.

2 Added notes available only in the on-line version.

http://bodrato.it/
http://bodrato.it/papers/#CIVV2008

	A Strassen-like Matrix Multiplication Suited for Squaring and Highest Power Computation
	Marco Bodrato

