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ABSTRACT
Strassen’s method is not the asymptotically fastest known
matrix multiplication algorithm, but it is the most widely
used for large matrices. Since his manuscript was published,
a number of variants have been proposed with different ad-
dition complexities. Here we describe a new one. The new
variant is at least as good as those already known for sim-
ple matrix multiplication, but can save operations either for
chain products or for squaring. Moreover it can be proved
optimal for these tasks. The largest saving is shown for nth-
power computation, in this scenario the additive complexity
can be halved, with respect to original Strassen’s.

Categories and Subject Descriptors
F.2.1 [Analysis of algorithms and program complex-
ity]: Numerical algorithms and problems—Computations
on matrices; G.1.3 [Numerical Analysis]: Numerical Lin-
ear Algebra; G.2.3 [Discrete mathematics]: Applications;
I.1.2 [Computing methodologies]: Algorithms—Algebraic
algorithms

General Terms
Algorithms, Performance, Theory.

Keywords
Polynomial matrix, exponentiation, optimal squaring, fast
multiplication, recursive algorithm.

1. INTRODUCTION
When this work started, the main goal was to find a way

to speed up the evaluation of a polynomial on a matrix. We
started from the first monomial that needs some non-trivial
computation: x2.
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To speed up this simple operation, we analysed Strassen’s
method [19] for matrix multiplication: it is the most widely
used, even if is not the asymptotically fastest known. Ev-
ery possible Strassen-like algorithm uses the same number of
multiplications: they differ on the number of additions and
subtractions. Winograd’s variant [21] requires the minimal
use of linear operations: 15 for a 2× 2 matrix. None of the
algorithms proposed so far did try to minimise operations
for squaring.

The new sequence we propose in §2.2, is basically equiv-
alent to Winograd’s variant, with a simple additional prop-
erty: symmetry. All the results in this paper derive from
this symmetry, directly or as a side effect.

The direct result is optimality for squaring, because we
can exploit the obvious symmetry of multiplying a single
operand by itself. The main side effect is a reduction of the
number of linear combinations needed either for the chain
product of three or more matrices, or required by nth-power
computation or even by more general polynomials on matri-
ces, the initial goal.

While matrix product and Strassen’s algorithm can be ap-
plied to rectangular matrices, this paper focuses on square
matrices, because only for this kind of matrices do squaring
and higher power computation make sense. Nevertheless the
new proposed sequence can be extended to any multiplica-
tion using standard techniques [6, 10].

To obtain formulas valid on every ring we started searching
combinations valid for boolean matrices, on F2. Then we
extended the sequences found this way to characteristic 0,
testing all possible liftings of the same formulas where 1 ∈
F2 was lifted to ±1 ∈ Z. Since the obtained algorithms
require only additions, subtractions and (non-commutative)
multiplications, they will work on any ring. In particular
they will work on the algebra of matrices, and can be used
recursively.

Applications
Strassen’s and Strassen-like methods for matrix multiplica-
tion are considered numerically unstable [2]; although some
corrections are possible, the main application for a fast ma-
trix multiplication algorithm is that of matrices on exact
rings or algebras. We mean matrices over finite fields, inte-
gers, rationals, polynomials and so on.

Many algebraic algorithms in graph theory work by build-
ing a matrix somehow representing the graph, then com-
puting some power of it, or repeatedly squaring it [9]. The
best-known result is: check elements on the diagonal of the
kth power of the adjacency matrix to count closed k-walks in
a graph. Adjacency matrices of graphs usually have boolean
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or integer entries, but also different definitions of the ad-
jacency [18] need an algebra where exact computations are
possible and Strassen-like methods can be applied.

Another direct application of matrix exponentiation can
be cryptography [17, 15]. Moreover the reduced number of
operations for chain products can be used in a lot of different
contexts, e.g. for number theoretical algorithms where small
2 × 2 matrices with huge integers are multiplied, like the
half-GCD [14] or fast Jacobi symbol computation [4].

2. MATRIX PRODUCT
Given two d×d matrices A,B, computation of the product

C = AB, with a näıve implementation, directly applying the
definition Cij =

P
k AikBkj , requires d3 multiplications and

d3 − d2 additions.
In particular we will study the 2× 2 case, so we will have:

„
C11 C12

C21 C22

«
=

„
A11 A12

A21 A22

«„
B11 B12

B21 B22

«
(1)

In the Appendix §Q only, we will briefly discuss the commu-
tative case. For the rest of the paper we will consider the
non-commutative scenario, because for big 2k × 2k matri-
ces the Aij , Bij are not ring elements, but k × k matrices
themselves.

2.1 Strassen-like Algorithms
The näıve algorithm requires Θ(d3) operations, but asymp-

totically faster algorithms exist. The first one, proposed in
1969 by Strassen [19], has the lower complexity Θ(dlog2 7) =
O(d2.8074). This is not the “fastest” known, but it’s the most
widely used, because asymptotically faster algorithms are
efficient for very huge matrices only.

The basic idea consists in an optimisation for the product
of 2×2 matrices, requiring only 7 instead of 8 multiplications.
When used recursively it gives the product of 2k×2k matrices
using 7k ring multiplications, instead of 23k = 8k.

When applied to 2 × 2 split matrices, Strassen method
requires also 18 linear operations (additions/subtractions)
on the sub-matrices.

2.2 New Proposed Sequence
We propose here a new variant, requiring the minimum

number of operations, and with an additional property: it is
optimal for squaring too and can save operations for chain
(three or more matrices) products. We start by describing
it for the simple product.

At first four linear pre-combinations are required for each
one of the two operands:

(2.s)

8>><>>:
S1=A22 +A12

S2=A22 −A21

S3=S2 +A12 = A22 −A21 +A12

S4=S3 −A11 = A22 −A21 +A12 −A11

(2.t)

8>><>>:
T1=B22 +B12

T2=B22 −B21

T3=T2 +B12

T4=T3 −B11

(2)

then the seven products and the final post-combinations:

(3.p)

8>>>>>>><>>>>>>>:

P1 = S1T1

P2 = S2T2

P3 = S3T3

P4 = A11B11

P5 = A12B21

P6 = S4B12

P7 = A21T4

(3.c)

8>>>>>>><>>>>>>>:

U1 = P3 + P5

U2 = P1 − U1

U3 = U1 − P2

C11 = P4 + P5

C12 = U3 − P6

C21 = U2 − P7

C22 = P2 + U2

(3)

The eight inputs Aij , Bij and the four outputs Cij satisfy
equation (1).

The proposed method above requires 7 multiplications and
4 + 4 + 7 = 15 linear combinations; exactly the same as the
Winograd’s variant, this was proved the best possible [16].

The sequence was found with a computer-aided search
within all possible linear combinations in F2, with one con-
dition: the preparation phases (2.s) and (2.t) should be the
same. Only 6 good combinations were found (Strassen’s
is one of them). The one chosen here is the best one for
squaring. There is only one equivalent sequence, which can
be obtained from the above by swapping X11 ↔ X22 and
X12 ↔ X21 for all the three matrices A, B, and C.

Then all the liftings of the sequence in F2 up to Z, lifting
1 to +1 or −1, have been tested, again with the condition
(2.s)≡(2.t). The result is the sequence above, valid for any
ring.

2.3 Operations for Squaring
At first we remember that matrix squaring has the same

asymptotic behaviour as matrix multiplication. One side of
the equivalence is obvious, because we can compute A2 =
A · A with a multiplication, the other side is easy too, by
observing that „

0 A
B 0

«2

=

„
AB 0
0 BA

«
.

Nevertheless we can hope to save at least some operations
when dealing with only one operand.

When we use formulas (2) and (3) for squaring, so that we
have A = B, we can observe that ∀i, Si = Ti. Moreover the
first four products P1 . . . P4 are themselves squares, while
the last three products share the three operands: A12, A21

and S4. We can use only (2.s), then substitute (3.p) with:8>>>>>>><>>>>>>>:

P1 = S2
1

P2 = S2
2

P3 = S2
3

P4 = A2
11

P5 = A12A21

P6 = S4A12

P7 = A21S4

(4)

The squaring operation, then, requires half the pre-combi-
nation, since it operates on one matrix only. This was true
for the original Strassen method too, but the new sequence
is shorter.

Lemma 1. Any division free bilinear algorithm (combina-
tion; product; combination) strategy to compute the square
of a 2×2 matrix, requires at least three products that are not
squares.

Proof. Let M =

„
a b
c d

«
be a matrix. Consider the F2-

vector space of linear combinations of the 16 possible (non-
commutative) products of the four entries: {aa, ab, ba, . . .}.



Let S = 〈aa, aa+ ab+ ba+ bb, . . .〉 be the sub-space gener-
ated by all possible squares of F2-linear combinations of the
entries, and Q = 〈aa+ bc, ab+ bd, ca+ dc, dd+ cb〉 be the
one generated by the entries of M2.

It is easy to verify that the intersection has dimension one
S∩Q = 〈aa+ bc+ cb+ dd〉. Then a basis of Q must contain
at least three elements that are not obtained by squaring or
linear combinations of squares.

Shared Triple Product
The additive complexity (the number of linear operations)
for computing the three products A12A21, A21S4, S4A12, is
the same as the additive complexity of squaring, so that the
saving extend to any recursion level thanks to the following
lemmas.

Lemma 2. The additive complexity of computing the three
products AB, BC, CA with the proposed sequence can be
made the same as the additive complexity of computing three
different squares (e.g. A2, B2, C2).

Proof. By induction.
For a single recursion level: given the symmetry of (2.s)

and (2.t), the linear combinations computed on the matrix A
for the product AB can be used, without any re-computation
for the product CA; the same holds for the other matrices.
Thus we need a set of combinations for each matrix, as if we
had to compute three squares.

For any additional recursion level: let AS1, AS2, · · · , CS4

be the combined sub-matrices. We need to compute the
following products:

AS1BS1 , BS1CS1 , CS1AS1 ,
AS2BS2 , BS2CS2 , CS2AS2 ,
AS3BS3 , BS3CS3 , CS3AS3 ,
A11B11 , B11C11 , C11A11 ,
A12B21 , B21CS4 , CS4A12 ,
AS4B12 , B12C21 , C21AS4 ,
A21BS4 , BS4C12 , C12A21 .

Each one of the lines above represents a triple product, thus,
by induction, is equivalent to the triplet of squares or triple
products used by the squaring sequence.

Corollary 1. Computing the square of a matrix requires
half the pre-combinations than a general product, and this is
true for any recursion level.

Proof. The statement is obvious for one recursion level,
because of symmetry. Lemma 2 extends the saving to any
recursion level.

3. OPERATIONS COLLAPSING
When computing chain products or a power, we can fur-

ther reduce the number of linear combinations, collating the
post-combination sequence of partial results with the pre-
combination needed for the next multiplication.

Let us take the simplest example: compute the product

of three matrices ABC. We can compute eA = AB, theneAC, but we do not really need to explicitly compute all the

elements of eA, which is only a partial result, we can modify
our sequence to obtain exactly, and only, the values needed
for the next product.

The sequence below collapses formulas (3.c) and (2.s) skip-

ping the unneeded value eA22, as a result we save 2 opera-
tions. 0BBBBBBBBB@

eA11eA21eA12eS1eS2eS3eS4

1CCCCCCCCCA
=

0BBBBBBB@

0 0 0 1 1 0 0
1 0 -1 0 -1 0 -1
0 -1 1 0 1 -1 0
1 0 0 0 0 -1 0
0 1 0 0 0 0 1
0 0 1 0 1 -1 1
0 0 1 -1 0 -1 1

1CCCCCCCA

0BBBBBBB@

P1

P2

P3

P4

P5

P6

P7

1CCCCCCCA
(5)

8>>>>>>>>>><>>>>>>>>>>:

eA11 =P4 + P5eA12 =P3 − P2 − P6 + P5eS2 =P2 + P7eS1 =P1 − P6eS3 = eS2 + eA12eA21 = eS1 − eS3eS4 = eS3 − eA11

9>>=>>; (6.c)

9=; (6.s)

(6)

The above consideration can be generalised to any matrix
chain product

Qn
i=1Ai, saving (n− 2) · 2 combinations, but

any such product should be re-implemented from scratch.
So we need a more general approach.

3.1 Intermediate Representation
Equation (6) splits in two sub-sequences: (6.c) and (6.s).

The first one computes four values from the products Pi,
while the last three values only depend on already computed
ones. This allows us to only compute the first four values,

then store the intermediate result as:

„ eA11
eA12eS2
eS1

«
.

This intermediate representation is tightly linked with the
standard one, and we can switch from one another simply ap-
plying the invertible linear function: ψ1. This function only
requires one addition and one subtraction, both in-place; the
same occurs for its inverse that requires two subtractions.

ψ1

„„
A11 A12

A21 A22

««
=

„
A11 A12

A22 −A21 A22 +A12

«
ψ−1

1

„„
A11 A12

S2 S1

««
=

„
A11 A12

(S1−A12)− S2 (S1−A12)

«
Since ψ1 is linear, it commutes with linear combinations:

∀A,B ∈Md×d; ∀α, β : ψ(αA±βB) = αψ(A)±βψ(B) (7)

When Strassen’s algorithm is used with more levels of re-
cursion, we can also recursively define deeper transform ψn:

ψn+1

„„
A11 A12

A21 A22

««
=

„
ψn(A11) ψn(A12)
ψn(A21) ψn(A22)

«
Those functions work on blocks and commute with one

another:

∀A,B ∈Md×d;∀a, b ≤ log2 d : ψa ◦ ψb = ψb ◦ ψa

With an abuse of notation we can say that any composition
ψ =©n

i=1ψi is linear, and equation (7) is always valid.
Carefully using one or both pre-combinations (2.s) and

(6.s), the products (3.p), then one of the post-combinations
(3.c) or (6.c), it is possible to build procedures taking as in-
put the couple ψa(A), ψb(B) and giving the output ψc(AB),
for any needed a, b, c. All combinations are possible and



handling all of them requires much care for details, a single
example will be given in subsection 3.3.

Each transform ψn requires additions/subtractions on half
the elements of the matrix, and saves one fourth of linear
operation each time the operand is used in a product. So
it is worth transforming each operand used more than twice
for a sequence of operations.

For example, to compute A7 = (A2 · A)2 · A, we should
start with ψ(A).

Every intermediate result should be stored ψ-transformed,
because this saves at least two operations. Conversely, the
final result of the computation should be obtained with the
original post-sequence (3.c), which is shorter than (6.c) fol-
lowed by ψ−1.

3.2 Intermediate Representation Optimality
On the side of memory footprint, the intermediate rep-

resentation uses the same memory used by the usual dense
unstructured matrix representation. If there are no rela-
tions a-priori, there is no way to squeeze the information in
a smaller space.

We can then claim the following

Lemma 3. The additive complexity obtained with Inter-
mediate Representation is optimal for 2 × 2 dense matrices
stored as four entries.

We will use two results. The first, due to Probert [16],
says that the seven multiplicand must be all different com-
binations of values from the matrix. The second result, by
Kaminski et al. [11], give us a relation between the minimal
additive complexity δ(s) of the pre-combination phase for
each one of the two operands and the additive complexity
δ(c) of the post-combination:

δ(c) ≥ δ(s) + 3. (8)

Note that for both Strassen’s original formulas (δ(sS) = 5,
δ(cS) = δ(sS) + 3 for a grand total of 2δ(sS) + δ(cS) =
3δ(sS) + 3 = 18 combinations) and Winograd’s variant (i.e.
δ(sW ) = 4 and the total is 3δ(sW )+3 = 15) we have equality
in relation (8).

Proof. When both operands and the result use the in-
termediate representation, a product consists in the pre-
computation (6.s), followed by the products (3.p) and re-
combined with (6.c).

Since we store 4 values, and we need 7 different ones, at
least 3 linear combinations are required. The count of δ(s) =
3 operations for equation (6.s) is then minimal.

The number of combinations in (6.c) gives δ(c) = 6. We
have equality in (8), so that also this value is minimal. The
grand-total 2δ(s)+δ(c) = 3δ(s)+3 = 12 is then the minimum
number of linear combinations required for a product of 2×2
matrices obtained with 7 products.

We did not prove that there can not exist any other se-
quence, solving an equation similar to (5) for some Strassen-
like product, with a smaller number of operations. We can
only claim that such a sequence can not give also an optimal
representation with respect to stored elements.

3.3 An Example for Chain Products
A possible application for the intermediate representation

is the computation of chain products. While computing

Qn
i=1Bi we may represent all partial product Rj =

Qj
i=1Bi

ψ-transformed.
Then we will loop on the primitive Rj+1 ← RjBj+1, where

the two R are transformed, but B is not. We give here all
details starting from the 2× 2 matrices

ψ(Rj) =

„
R11 R12

S2 S1

«
, Bj+1 =

„
B11 B12

B21 B22

«
.

We use (6.s) on Rj and (2.t) on B,8<: S3 =S2 +R12

R21=S1 − S3

S4 =S3 −R11

8>><>>:
T1=B22 +B12

T2=B22 −B21

T3=T2 +B12

T4=T3 −B11

then the seven products in (3.p), and finally (6.c)8>>>>>>><>>>>>>>:

P1 = S1T1

P2 = S2T2

P3 = S3T3

P4 = R11B11

P5 = R12B21

P6 = S4B12

P7 = R21T4

8>><>>:
eR11 =P4 + P5eR12 =P3 − P2 − P6 + P5eS2 =P2 + P7eS1 =P1 − P6

to obtain

ψ(Rj+1) =

„eR11
eR12eS2
eS1

«
.

We saved one pre-computation and one post-computation
for each product.

For the final result, when we actually need the true value
of Rn we can directly use the post-computation from (3.c)
in the last step, or we can apply ψ−1 after it.

3.4 Impact on Complexity
A referee suggested to compute the total number of op-

erations needed for the product of two d × d matrices with
d = 2k a power of 2, using k recursions. It was done by
Strassen in his original paper [19], and his formula can eas-
ily be generalised.

Let l be the number of linear operations needed in any
Strassen-like sequence, the operation count is:

dlg 7 prods +

„
l

3
dlg 7 − l

3
d2

«
adds =

„
1 +

l

3

«
dlg 7 − l

3
d2.

Where lg is log2, the logarithm to the base 2.
Then we can resume all complexities in a single table:

Method l operation count

Strassen 18 7dlg 7−6d2

Winograd 15 6dlg 7−5d2

ψ-representation 12 5dlg 7−4d2

squaring 11 14
3
dlg 7− 11

3
d2

ψ-squaring 9 4dlg 7−3d2

Where ψ-operations consider both operands and result ψ-
transformed.

Unfortunately the evaluation in real world implementation
is much more complex. On one side the results above are
unfair because in most situations addition and product (and
squaring) costs are not the same. On the other side we know
that frequently the recursion does not reach 2× 2 matrices,
but stops when some threshold is crossed.



4. COMPUTING THE POWER
There are mainly two ways to compute the power An of a

generic matrix.
Which one is faster, depends on many parameters and

implementation details, and is out of the scope of this paper.
Here we will shortly outline the two strategies, and focus on
the possible savings in linear operations for both algorithms
by using ψ(A), the intermediate representation of A.

4.1 Binary Algorithm
The classical fast exponentiation, widely known and used,

is based on the binary expansion of the exponent, followed
by a clever sequence of the two operations:
M ←M2 ; M ← AM2.

Strassen’s original algorithm would require 18 linear com-
bination for every product or squaring.

If we use the intermediate representation for every partial
result, each squaring would cost only 9 combinations. If we
have ψ(A) computed in a first step, every product would
require 2×(6.s)+(6.c)= 12 combinations.

The best results can be reached if we store all the results
of the first computation from the sequence (2.s) and we keep
them till the end of exponentiation. In this case also the
products will require only 9 combinations, so that we halved
the additive complexity with respect to Strassen’s strategy.

But remember, we did not change the number of multipli-
cations.

4.2 Polynomial Shortcut
Another way to compute the power of A ∈Md×d is:
- compute P , the minimal polynomial of A;
- compute the polynomial pn ≡ xn (mod P );
- evaluate the polynomial pn on the matrix.
The polynomial pn has degree at most d − 1. There are

several methods to evaluate pn(A), but all of them need d−2
matrix products or squarings and some linear operations.

Thanks to the linearity of the intermediate representation,
we can use it for partial results in any evaluation algorithm,
and we expect to save 3(d − 2) linear operations with the
ψ-representation.

5. IMPLEMENTATIONS
The sequence proposed in §2.2 was implemented by the

author for M4RI [1]: a library for linear algebra over F2,
giving a very small (1%) but unexpected speed up for plain
products.

Another unexpected result is a speed up for multiplication
of rectangular matrices with the extended algebra described
by D’Alberto and Nicolau [6]. Here the advantage of the
new sequence with respect to Winograd’s comes from the
fact that the new one uses many times the sub-matrix A22

and only a few times A11 (the same for B). The former
being smaller than the latter when the matrix is unevenly
split. Thus the new sequence also have the same requisite
as the one independently proposed by Loos [12].

5.1 Sketches on Scheduling
The new proposed sequence can be obtained from Wino-

grad’s formulas by applying permutations and sign changes,
so that the scheduling work done for that sequence [3, 7,
10] can be recycled; the result is that it should be possible
to substitute the new sequence into any code already im-

plementing Winograd’s, basically with no need to rearrange
memory usage.

All the papers above consider only two possible operations:
C ← A · B and C ← C + A · B. In fast GCD [14] or Jacobi
symbol computation [4], another operation is typically used:
A← A ·B, where one of the two operands gets overwritten.

Only one implementation was found by the author, in the
GMP-4.3 library, using Winograd’s and six temporary vari-
ables. The new version of the GMP library [8] contains an
implementation by the author of the new sequence. It uses
only four temporaries thanks to the following schedule.

1 U1 ←A12 · B21

2 A22←A22−A21

3 A12←A22−A12

4 S ←A12 +A11

5 U2 ←A11 · B11

6 A11←U2 +U1

7 T ←B22−B21

8 U2 ←A22 · T

9 T ←T +B12

10 A22←A12 · T
11 A22←A22−U1

12 T ←T −B11

13 U1 ←A21 · T
14 A12←A12 +A21

15 A21←U1 +A22

16 A22←A22−U2

17 U1 ←S · B12

18 T ←B22 +B12

19 U2 ←A12 · T
20 A12←U1 −A22

21 A21←U2 −A21

22 A22←U2 −A22

Table 1: Scheduling for the A← A ·B operation.

If B can be overwritten as well, the temporary T can be
removed, using B21 for it. Anyway, the main purpose of
this section is not to exhaust the subject of scheduling, but
the opposite: to remark the fact that a lot of work can be
done on new sequences, probably exploring all of them as
collected in Appendix R.

For example the sequence in table 1 is not exactly the one
described for squaring, because some sign was changed. . .

6. CONCLUSIONS
We have shown, in §2.2, a new sequence for Strassen-like

matrix multiplication. This new sequence is optimal with
respect to multiplicative and additive complexity for generic
2× 2 matrices and for recursive use.

Thanks to the additional property of symmetry, half of
the preliminary operations can be saved when the product
involves one operand only. The squaring case also has the
maximal number of recursive multiplications being them-
selves squares. Again the new sequence is optimal.

The sequence can be shortened even more with some lin-
ear pre-computations. We have shown an in-place transform
for matrices, requiring 2 operations per recursion level, af-
ter which any product costs 3 operations less. Transformed
and standard matrices can be mixed, and some gain can be
achieved for chain products even if none of the operands is
transformed in advance.

We then propose the use of our new sequence for every im-
plementation of Strassen’s matrix multiplication. It is not
worse than the widely used Winograd sequence for simple
multiplications, but it can give performance gain for squar-
ing, chain products and general polynomial computation.
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APPENDIX
Q. COMMUTATIVE MATRIX SQUARING

For very small matrices, recursive methods are often too
expensive, particularly when we can use commutativity of
the base ring.

For 2× 2 and 3× 3 matrices, we trivially have„
a b
c d

«2

=

„
a2 + bc b(a+ d)
c(a+ d) d2 + bc

«
0@a b c

d e f
g h i

1A2

=

0@ a2 + bd + cg b(a + e) + ch c(a + i) + bf
d(a + e) + fg e2 + bd + fh cd + f(e + i)
g(a + i) + dh h(e + i) + bg i2 + fh + cg

1A
The formula can be generalised to any dimension requiring

d squares, d3− d2−

 
d

2

!
products, d3− d2−

 
d

2

!
additions.

(9)
This trivial optimisation should be compared to Waksman

multiplication [20] for d×d matrices, and to recursive use of
Strassen-like algorithm. It wins only for dimension 2 and 3.
Nevertheless its combined use with one or more recursions of
the sequence proposed in §2.2 can give the best algorithm for
squaring very small matrices if we count the total number
of ring products required. In the table 2 we compare our
matrix squaring with the best known algorithms to compute
the product of two matrices.

In particular we should notice that:
- for the 5 × 5 squaring, Waksman requires 93 products,

equation (9) proposes 90 products plus 5 squares, which may
be better in some cases;



- for the 6 × 6 case, Waksman needs 141 multiplications
(sums ∼= 480), our new sequence splits in four 3× 3 squares
(using (9)), and three 3 × 3 products (Waksman), totalling
23 · 3 + 15 · 4 = 129 products and 3 · 4 = 12 squarings; same
number of operations (fewer sums ∼= 390), but with a better
product/square ratio.

R. OTHER RESULTS IN GF(2)
There are some obvious transformations which allow us to

take a Strassen-like matrix multiplication algorithm and to
obtain another [5].

Let J be the matrix J =

„
0 1
1 0

«
: the two transformations

A ·B = (BT ·AT )T and A ·B = J ((JAJ) · (JBJ)) J (which
is the symmetry we made mention of in §2.2), are the only
two preserving both the kind of operations and the existing
symmetry.

By adding other transformations not requiring additional
linear operations, namely A ·B = J((JA) ·B) = (A ·(BJ))J ,
we can group all the possible Strassen-like sequences in four
equivalence classes:

1. one containing the proposed sequence, the symmetric
equivalent, Winograd’s and 5 different ones;

2. one containing the original Strassen’s and 3 more;

3. one with A11 ·(B11+B12); (A12+A22)·(B12+B22); (A12+
A21+A22) ·(B12+B21); A12 ·(B21+B22); (A21+A22) ·B21;
A21 · (B11+B21); (A11+A12+A21+A22) · B12, and 15
more sequences

4. and the one represented by (A11+A12+A22)·(B11+B12+
B22); A11 · (B12+B22); A22 ·B21; (A11+A12+A21+A22) ·
(B11+B12); (A12+A22) ·(B11+B12+B21+B22); A21 ·B11;
(A11+A12) ·B22, containing also 7 other sequences.

Totalling only 36 possible combinations in F2. Obviously
every multiplication sequence in characteristic zero must be
a lifting of one of them.

Any search for possible schedulings should test at least one
sequence in each one of the classes above, because Strassen’s
and Winograd’s are not the only sequences available.

T. TIMINGS
The new sequence has many possible applications, and the

intermediate representation adds many possible variants. It
is quite difficult to implement all possible variations and to
show a graph giving all needed informations at a glance.

The author implemented some simple functions to com-
pute 2×2 matrix product and squaring, using some different
strategies. The entries are integers, for this test implemen-
tation the mpz type provided by GMP-5.0.1 [8] was used.
Timings have been measured on a 32-bits Centrino, running
Debian GNU/Linux. With different architectures the actual
numbers can be different, but the shapes should be similar.

Figure 1 shows relative timings for matrix-matrix multi-
plication, comparing four different algorithms. The näıve
8-products algorithm is used as a reference, its timings are
normalised as 100%. Two algorithms are indistinguishable:
Winograd, and the new proposed sequence. This was ex-
pected, because the operation count is exactly the same; the
threshold between the näıve algorithm and Strassen-like is
somewhere around 500 bits.

The fourth algorithm named “psi multiplication” is the
product with both operands and the result using the inter-

mediate representation, three linear operations are saved.
As a result it wins on the näıve algorithm a little bit earlier,
and it is a little bit faster than plain Winograd for all entries
sizes.

The second graph in Figure 2 shows relative timings for
squaring. The algorithm are named in the key sorted by
their timings on the right side of the graph (operands with
entries of 800-bits).

Näıve multiplication and näıve squaring are the same algo-
rithm. Using a single operand, squaring compute the squares
of two entries. Squaring an integer is faster than perform-
ing a multiplication, thanks to the underling GMP library,
that’s why the timings are different.

Winograd uses only one squaring on the entries, and its
threshold with respect to näıve squaring is around 700 bits,
much larger than the multiplication threshold.

Used for squaring, the new sequence is much faster than
Winograd. For this implementation and this dimension, we
can argue that the speed saving mostly come from the high
number of multiplications replaced by squarings on entries.
The “psi-squaring” uses the intermediate representation and
saves some more linear operation; we can observe that the
additional speed-up is not large.

The real winner in this graph is the algorithm exploit-
ing the commutativity of integers, the one described in Ap-
pendix Q. We remember here that it can only win for 2× 2
or 3× 3 matrices, where the total number of non-linear op-
erations (products or squarings) can be reduced.
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Figure 1: Matrix-matrix product timing comparisons.
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Figure 2: Matrix squaring timing comparisons.
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