A Strassen-like Matrix Multiplication
 Suited for Squaring and Higher Power Computation

Marco Bodrato

ISSAC 2010 - July $28^{\text {th }}$

(1) A new Strassen-like sequence for matrix squaring

- Multiplication algorithms and complexity
- The new proposed sequence
- Strassen-like squaring
(2) Chain product and power computation
- Intermediate results
- Operation collapsing
- Intermediate representation
(3) Conclusions
- Timings
- Implementations
- Final considerations

Matrix 2×2 product ...

We start from two matrices $A, B \in M_{2 \times 2}$ and we need the product:

$$
M_{2 \times 2} \ni C=\left(\begin{array}{ll}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{array}\right)=\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right)\left(\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right)
$$

Naïve vs.
The naïve algorithm requires 8 multiplications:

$$
C=\left(\begin{array}{ll}
A_{11} B_{11}+A_{12} B_{21} & A_{11} B_{12}+A_{12} B_{22} \\
A_{21} B_{11}+A_{22} B_{21} & A_{21} B_{12}+A_{22} B_{22}
\end{array}\right)
$$

thanks to Strassen, we can use only 7.

Matrix 2×2 product and squaring

We start from one matrix $A \in M_{2 \times 2}$ and we need the square of it:

$$
M_{2 \times 2} \ni C=\left(\begin{array}{ll}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{array}\right)=\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right)^{2}
$$

Naïve vs.

Strassen

The naïve algorithm requires 8 multiplications:

$$
C=\left(\begin{array}{ll}
A_{11} A_{11}+A_{12} A_{21} & A_{11} A_{12}+A_{12} A_{22} \\
A_{21} A_{11}+A_{22} A_{21} & A_{21} A_{12}+A_{22} A_{22}
\end{array}\right) ;
$$

thanks to Strassen, we can use only 7.

Recall Strassen method

Strassen's method trades one multiplication with many pre- and post- linear combinations, it does not assume commutativity and it can be used recursively.

$$
\left\{\begin{array} { l }
{ P _ { 1 } = (A _ { 2 1 } + A _ { 2 2 }) B _ { 1 1 } } \\
{ P _ { 2 } = A _ { 1 1 } (B _ { 1 2 } - B _ { 2 2 }) } \\
{ P _ { 3 } = (A _ { 1 2 } - A _ { 2 2 }) (B _ { 2 1 } + B _ { 2 2 }) } \\
{ P _ { 4 } = (A _ { 1 1 } + A _ { 1 2 }) B _ { 2 2 } } \\
{ P _ { 5 } = A _ { 2 2 } (B _ { 2 1 } - B _ { 1 1 }) } \\
{ P _ { 6 } = (A _ { 2 1 } - A _ { 1 1 }) (B _ { 1 1 } + B _ { 1 2 }) } \\
{ P _ { 7 } = (A _ { 1 1 } + A _ { 2 2 }) (B _ { 1 1 } + B _ { 2 2 }) }
\end{array} \quad \left\{\begin{array}{l}
C_{11}=P_{7}-P_{4}+P_{5}+P_{3} \\
C_{12}=P_{2}+P_{4} \\
C_{21}=P_{1}+P_{5} \\
C_{22}=P_{7}+P_{2}-P_{1}+P_{6}
\end{array}\right.\right.
$$

A new Strassen-like sequence for matrix squaring

Strassen-like 2×2 matrix multiplication algorithm

Number of operations, for the product of 2×2 matrices

Method	additions	multiplications	complexity
Naïve	4	8	d^{3}
Strassen's	18	7	$7 d^{\log _{2} 7}$
Winograd's	$\mathbf{1 5}$	$\mathbf{7}$	$6 d^{\log _{2} 7}$

Winograd variant is optimal for 2×2 multiplication.
That's why research on 2×2 matrix product basically stopped (except some works on scheduling), the focus moved on bigger matrices.

The search for a new sequence

What about matrix squaring?

Squaring method	additions	multiplications	squaring
Naïve	4	6	2
Strassen's	13	6	1
Winograd's	15	6	1

Winograd's variant is not optimal for 2×2 squaring. That's why we started the search for a new sequence. The sequence was searched for 2×2 matrices in GF(2), as a sequence of additions and multiplications only, then lifted to \mathbb{Z}.
We can not use commutativity.
We are not trying to reduce the big-O complexity.

The new sequence for $C=A B$

$$
A=\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right)\left\{\begin{array}{l}
S_{1}=A_{22}+A_{12} \\
S_{2}=A_{22}-A_{21} \\
S_{3}=S_{2}+A_{12} \\
S_{4}=S_{3}-A_{11}
\end{array} \quad B=\left(\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right)\left(\begin{array}{l}
T_{1}=B_{22}+B_{12} \\
T_{2}=B_{22}-B_{21} \\
T_{3}=T_{2}+B_{12} \\
T_{4}=T_{3}-B_{11}
\end{array}\right.\right.
$$

$$
\left\{\begin{array} { l }
{ P _ { 1 } = S _ { 1 } T _ { 1 } } \\
{ P _ { 2 } = S _ { 2 } T _ { 2 } } \\
{ P _ { 3 } = S _ { 3 } T _ { 3 } } \\
{ P _ { 4 } = A _ { 1 1 } B _ { 1 1 } } \\
{ P _ { 5 } = A _ { 1 2 } B _ { 2 1 } } \\
{ P _ { 6 } = S _ { 4 } B _ { 1 2 } } \\
{ P _ { 7 } = A _ { 2 1 } T _ { 4 } }
\end{array} \quad \left\{\begin{array}{l}
U_{1}=P_{3}+P_{5} \\
U_{2}=P_{1}-U_{1} \\
U_{3}=U_{1}-P_{2} \\
C_{11}=P_{4}+P_{5} \\
C_{12}=U_{3}-P_{6} \\
C_{21}=U_{2}-P_{7} \\
C_{22}=P_{2}+U_{2}
\end{array} \rightsquigarrow C=\left(\begin{array}{ll}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{array}\right)\right.\right.
$$

What's new in the new sequence

The new sequence is:

- equivalent to Winograd's variant for plain product;
- symmetric;
- optimal for squaring;

Squaring method additions multiplications squaring

Naïve
Strassen's
Winograd's
New sequence
$4 \quad 6$
13
15
11
34
6
$6 \quad 1$

What's new in the new sequence

The new sequence is:

- equivalent to Winograd's variant for plain product;
- symmetric;
- optimal for squaring;
- number of multiplications and squarings is minimal (7),
- number of multiplications not being squarings is minimal (3),
- because of symmetry pre-computations on the operand is halved.

Squaring method additions multiplications squaring

Naïve
Strassen's
Winograd's
New sequence

46
13
15
11

6

2

11
The new sequence for $C=A^{2}$

$$
A=\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right)\left\{\begin{array}{l}
S_{1}=A_{22}+A_{12} \\
S_{2}=A_{22}-A_{21} \\
S_{3}=S_{2}+A_{12} \\
S_{4}=S_{3}-A_{11}
\end{array}\right.
$$

$$
\left\{\begin{array} { l }
{ P _ { 1 } = S _ { 1 } S _ { 1 } } \\
{ P _ { 2 } = S _ { 2 } S _ { 2 } } \\
{ P _ { 3 } = S _ { 3 } S _ { 3 } } \\
{ P _ { 4 } = A _ { 1 1 } A _ { 1 1 } } \\
{ P _ { 5 } = A _ { 1 2 } A _ { 2 1 } } \\
{ P _ { 6 } = S _ { 4 } A _ { 1 2 } } \\
{ P _ { 7 } = A _ { 2 1 } S _ { 4 } }
\end{array} \quad \left\{\begin{array}{l}
U_{1}=P_{3}+P_{5} \\
U_{2}=P_{1}-U_{1} \\
U_{3}=U_{1}-P_{2} \\
C_{11}=P_{4}+P_{5} \\
C_{12}=U_{3}-P_{6} \\
C_{21}=U_{2}-P_{7} \\
C_{22}=P_{2}+U_{2}
\end{array} \rightsquigarrow C=\left(\begin{array}{ll}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{array}\right)\right.\right.
$$

The three products. . .

Thanks to symmetry, when dealing with the three products, we can keep using a half the pre-computation on operands, and this is true for any recursion level.

$$
\left\{\begin{array}{l}
P_{5}=A_{12} A_{21} \\
P_{6}=S_{4} A_{12} \\
P_{7}=A_{21} S_{4}
\end{array}\right.
$$

Matrix multiplication is not commutative, but the sequence is symmetric

Reduce linear operations for chain products

When one needs to compute M^{3} or $M_{1} M_{2} M_{3}$, one usually need some intermediate results: $M^{2} M,\left(M_{1} M_{2}\right) M_{3}$.

Reduce linear operations for chain products

When one needs to compute M^{3} or $M_{1} M_{2} M_{3}$, one usually need some intermediate results: $M^{2} M,\left(M_{1} M_{2}\right) M_{3}$.
$\left(\begin{array}{ll}M_{11} & M_{12} \\ M_{21} & M_{22}\end{array}\right)\left\{\begin{array}{lll}S_{1} & \rightsquigarrow & P_{1} \\ S_{2} & \rightsquigarrow & P_{2} \\ S_{3} & \rightsquigarrow & P_{3} \\ S_{4} & \rightsquigarrow & P_{4} \\ M_{11} & \rightsquigarrow & P_{5} \\ M_{12} & \rightsquigarrow & P_{6} \\ M_{21} & \rightsquigarrow & P_{7}\end{array}\right\}\left(\begin{array}{llll}\widetilde{M}_{11} & \widetilde{M}_{12} \\ \widetilde{M}_{21} & \widetilde{M}_{22}\end{array}\right)\left\{\begin{array}{lll}\widetilde{S}_{1} & \rightsquigarrow & \widetilde{P}_{1} \\ \widetilde{S}_{2} & \rightsquigarrow & \widetilde{P}_{2} \\ \widetilde{S}_{3} & \rightsquigarrow & \widetilde{P}_{3} \\ \widetilde{S}_{4} & \rightsquigarrow & \widetilde{P}_{4} \\ \widetilde{M}_{11} & \rightsquigarrow & \widetilde{P}_{5} \\ \widetilde{M}_{12} & \rightsquigarrow & \widetilde{P}_{6} \\ \widetilde{M}_{21} & \rightsquigarrow & \widetilde{P}_{7}\end{array}\right.$

Reduce linear operations for chain products

When one needs to compute M^{3} or $M_{1} M_{2} M_{3}$, one usually need some intermediate results: $M^{2} M,\left(M_{1} M_{2}\right) M_{3}$.
$\left(\begin{array}{ll}M_{11} & M_{12} \\ M_{21} & M_{22}\end{array}\right)\left\{\begin{array}{lll}S_{1} & \rightsquigarrow & P_{1} \\ S_{2} & \rightsquigarrow & P_{2} \\ S_{3} & \rightsquigarrow & P_{3} \\ S_{4} & \rightsquigarrow & P_{4} \\ M_{11} & \rightsquigarrow & P_{5} \\ M_{12} & \rightsquigarrow & P_{6}\end{array}\right.$
If we don't need the intermediate value, we should skip it.

How to skip the unneeded values

The linear post- and pre- computation can collapse.

$$
\left\{\begin{array}{l}
\widetilde{M}_{11}=P_{4}+P_{5} \\
\widetilde{M}_{12}=P_{3}-P_{2}-P_{6}+P_{5} \\
\widetilde{S}_{2}=P_{2}+P_{7} \\
\widetilde{S}_{1}=P_{1}-P_{6} \\
\widetilde{S}_{3}=\widetilde{S}_{2}+\widetilde{M}_{12} \\
\widetilde{M}_{21}=\widetilde{S}_{1}-\widetilde{S}_{3} \\
\widetilde{S}_{4}=\widetilde{S}_{3}-\widetilde{M}_{11}
\end{array}\right.
$$

Before we had $7+4=11$ operations, now we have 9 .

How to skip the unneeded values

The linear post- and pre- computation can collapse.

$$
\left\{\begin{array}{l}
\widetilde{M}_{11}=P_{4}+P_{5} \\
\widetilde{M}_{12}=P_{3}-P_{2}-P_{6}+P_{5} \\
\widetilde{S}_{2}=P_{2}+P_{7} \\
\widetilde{S}_{1}=P_{1}-P_{6} \\
\widetilde{S}_{3}=\widetilde{S}_{2}+\widetilde{M}_{12} \\
\widetilde{M}_{21}=\widetilde{S}_{1}-\widetilde{S}_{3} \\
\widetilde{S}_{4}=\widetilde{S}_{3}-\widetilde{M}_{11}
\end{array}\right\} \text { Depending on products }
$$

Before we had $7+4=11$ operations, now we have 9 . Moreover we can group operations ...

How to save linear operations

Before we had an unneeded value

$$
\left(\begin{array}{ll}
M_{11} & M_{12} \\
M_{21} & M_{22}
\end{array}\right\}\left\{\begin{array}{lll}
S_{1} & \rightsquigarrow & P_{1} \\
S_{2} & \rightsquigarrow & P_{2} \\
S_{3} & \rightsquigarrow & P_{3} \\
S_{4} & \rightsquigarrow & P_{4} \\
M_{11} & \rightsquigarrow & P_{5} \\
M_{12} & \rightsquigarrow & P_{6} \\
M_{21} & \rightsquigarrow & P_{7}
\end{array}\right\}\left(\begin{array}{llll}
\widetilde{M}_{11} & \widetilde{M}_{12} \\
\widetilde{M}_{21} & \widetilde{M}_{22}
\end{array}\right) \begin{cases}\widetilde{P}_{1} \\
\widetilde{S}_{2} & \rightsquigarrow \\
\widetilde{P}_{2} \\
\widetilde{S}_{3} & \rightsquigarrow \\
\widetilde{P}_{3} \\
\widetilde{S}_{4} & \rightsquigarrow \\
\widetilde{P}_{4} \\
\widetilde{M}_{11} & \rightsquigarrow \\
\widetilde{P}_{5} \\
\widetilde{M}_{12} & \rightsquigarrow \\
\widetilde{P}_{6} \\
\widetilde{M}_{21} & \rightsquigarrow \\
\widetilde{P}_{7}\end{cases}
$$

How to save linear operations

Before we had an unneeded value, now we have none.

$$
\left(\begin{array}{ll}
M_{11} & M_{12} \\
M_{21} & M_{22}
\end{array}\right)\left\{\begin{array}{lll}
S_{1} & \rightsquigarrow & P_{1} \\
S_{2} & \rightsquigarrow & P_{2} \\
S_{3} & \rightsquigarrow & P_{3} \\
S_{4} & \rightsquigarrow & P_{4} \\
M_{11} & \rightsquigarrow & P_{5} \\
M_{12} & \rightsquigarrow & P_{6} \\
M_{21} & \rightsquigarrow & P_{7}
\end{array}\right\}\left(\begin{array}{ll}
\widetilde{M}_{11} & \widetilde{M}_{12} \\
\widetilde{S}_{2} & \widetilde{S}_{1}
\end{array}\right)\left\{\begin{array}{ccc}
\widetilde{S}_{1} \\
\widetilde{S}_{2} & \rightsquigarrow & \widetilde{P}_{2} \\
\widetilde{S}_{3} & \rightsquigarrow & \widetilde{P}_{3} \\
\widetilde{S}_{4} & \rightsquigarrow & \widetilde{P}_{4} \\
\widetilde{M}_{11} & \rightsquigarrow & \widetilde{P}_{5} \\
\widetilde{M}_{12} & \rightsquigarrow & \widetilde{P}_{6} \\
\widetilde{M}_{21} & \rightsquigarrow & \widetilde{P}_{7}
\end{array}\right.
$$

We save 2 operations by replacing the sequences.
Because of symmetry of the method we do not care of computation order: $\left(M_{1} M_{2}\right) M_{3}$ or $M_{1}\left(M_{2} M_{3}\right)$.

Intermediate and standard representation are linked

The intermediate representation is obtained from the standard one with a simple linear function.

$$
\begin{aligned}
& \psi\left(\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right)\right)=\left(\begin{array}{cc}
A_{11} & A_{12} \\
A_{22}-A_{21} & A_{22}+A_{12}
\end{array}\right) \\
& \psi^{-1}\left(\left(\begin{array}{cc}
A_{11} & A_{12} \\
S_{2} & S_{1}
\end{array}\right)\right)=\left(\begin{array}{cc}
A_{11} & A_{12} \\
\left(\mathbf{S}_{1}-\mathbf{A}_{12}\right)-S_{2} & \left(\mathbf{S}_{1}-\mathbf{A}_{12}\right)
\end{array}\right)
\end{aligned}
$$

This representation is optimal

- it uses as much memory as standard one;
- the number of linear operation for Strassen-like multiplications is minimal.

It's linear: it can be used for general polynomial computations too.

Matrix-Matrix Multiplication

Time ratio with respect to naïve multiplication (2×2)

Timings
Implementations
Final considerations

Matrix Squaring

Time ratio with respect to naïve squaring (2×2)

Current implementations of the new sequence

(1) M4RI: for big matrices in GF(2) (early 2009);
(2) GMP: for 2×2 matrices, (used in HGCD code);
(3) fastmm library: matrices with float entries (licence problems);

None of them implement chain product nor any trick for powers, nevertheless they give some small but measurable improvement with respect to previous Strassen-Winograd implementations.
(There are others good side-effects of symmetry)

Conclusions

A new Strassen-like sequence was proposed. It is:

- symmetric;
- optimal for plain product (not new);
- optimal for squaring;
- optimal for chain products.

Software implementation is as easy as Winograd's variant. Consider implementing it if you need a variant of Strassen.

That's all !

Thank you very much for your kind attention

Questions?

Presentation will be available on the web: http://bodrato.it/papers/\#ISSAC2010, released under a CreativeCommons BY-NC-SA licence. @®@(1)

> Full paper too is available on web.
(4) Some more details

- Commutative matrix squaring
- Winograd's variant

Matrix 2×2 squaring, exploiting commutativity

The simple formula for 2×2 matrices

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)^{2}=\left(\begin{array}{cc}
a^{2}+b c & b(a+d) \\
c(a+d) & d^{2}+b c
\end{array}\right)
$$

It can be generalised obtaining:

$$
d \text { squares, } d^{3}-d^{2}-\binom{d}{2} \text { products, } d^{3}-d^{2}-\binom{d}{2} \text { additions, }
$$

but it is fast only for 2×2 or 3×3 matrices.

Winograd's variant

No symmetry. . .

$$
A=\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right)\left\{\begin{array}{l}
S_{1}=A_{21}+A_{22} \\
S_{2}=S_{1}-A_{11} \\
S_{3}=A_{11}-A_{21} \\
S_{4}=A_{12}-S_{2}
\end{array} \quad B=\left(\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right)\left\{\begin{array}{l}
T_{1}=B_{12}-B_{11} \\
T_{2}=B_{22}-T_{1} \\
T_{3}=B_{22}-B_{12} \\
T_{4}=B_{21}-T_{2}
\end{array}\right.\right.
$$

$$
\left\{\begin{array} { l }
{ P _ { 1 } = A _ { 1 1 } B _ { 1 1 } } \\
{ P _ { 2 } = A _ { 1 2 } B _ { 2 1 } } \\
{ P _ { 3 } = S _ { 1 } T _ { 1 } } \\
{ P _ { 4 } = S _ { 2 } T _ { 2 } } \\
{ P _ { 5 } = S _ { 3 } T _ { 3 } } \\
{ P _ { 6 } = S _ { 4 } B _ { 2 2 } } \\
{ P _ { 7 } = A _ { 2 2 } T _ { 4 } }
\end{array} \left\{\begin{array}{l}
U_{1}=P_{1}+P_{4} \\
U_{2}=U_{1}+P_{5} \\
U_{3}=U_{1}+P_{3} \\
C_{11}=P_{2}+P_{1} \\
C_{12}=U_{3}+P_{6} \\
C_{21}=U_{2}+P_{7} \\
C_{22}=U_{3}+P_{5}
\end{array}\right.\right.
$$

