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Matrix 2× 2 product . . .

We start from two matrices A,B ∈ M2×2

and we need the product:

M2×2 3 C =

(
C11 C12

C21 C22

)
=

(
A11 A12

A21 A22

)2

(
A11 A12

A21 A22

)(
B11 B12

B21 B22

)

Näıve vs. Strassen

The näıve algorithm requires 8 multiplications:

C =

(
A11B11 + A12B21 A11B12 + A12B22

A21B11 + A22B21 A21B12 + A22B22

)
;

thanks to Strassen, we can use only 7.
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Matrix 2× 2 product and squaring

We start from one matrix A ∈ M2×2

and we need the square of it:

M2×2 3 C =

(
C11 C12

C21 C22

)
=

(
A11 A12

A21 A22

)2

(
A11 A12

A21 A22

)(
B11 B12

B21 B22

)

Näıve vs. Strassen

The näıve algorithm requires 8 multiplications: commutative case

C =

(
A11A11 + A12A21 A11A12 + A12A22

A21A11 + A22A21 A21A12 + A22A22

)
;

thanks to Strassen, we can use only 7.
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Recall Strassen method

Strassen’s method trades one multiplication with many pre- and
post- linear combinations, it does not assume commutativity and it
can be used recursively.



P1 = (A21 + A22)B11

P2 = A11(B12 − B22)
P3 = (A12 − A22)(B21 + B22)
P4 = (A11 + A12)B22

P5 = A22(B21 − B11)
P6 = (A21 − A11)(B11 + B12)
P7 = (A11 + A22)(B11 + B22)


C11 = P7 − P4 + P5 + P3

C12 = P2 + P4

C21 = P1 + P5

C22 = P7 + P2 − P1 + P6
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Strassen-like 2× 2 matrix multiplication algorithm

Number of operations, for the product of 2× 2 matrices

Method additions multiplications complexity

Näıve 4 8 d3

Strassen’s 18 7 7d log2 7

Winograd’s 15 7 6d log2 7

Winograd variant is optimal for 2× 2 multiplication.
That’s why research on 2× 2 matrix product basically stopped
(except some works on scheduling), the focus moved on bigger
matrices.
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The search for a new sequence

What about matrix squaring?

Squaring method additions multiplications squaring
Näıve 4 6 2
Strassen’s 13 6 1
Winograd’s 15 6 1

Winograd’s variant is not optimal for 2× 2 squaring.
That’s why we started the search for a new sequence.
The sequence was searched for 2× 2 matrices in GF(2), as a
sequence of additions and multiplications only, then lifted to Z.
We can not use commutativity.
We are not trying to reduce the big-O complexity.
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The new sequence for C = AB
Symmetry! look at Winograd’s

A=

(
A11 A12

A21 A22

)
S1=A22 + A12

S2=A22 − A21

S3=S2 + A12

S4=S3 − A11

B =

(
B11 B12

B21 B22

)
T1=B22 + B12

T2=B22 − B21

T3=T2 + B12

T4=T3 − B11



P1 = S1T1

P2 = S2T2

P3 = S3T3

P4 = A11B11

P5 = A12B21

P6 = S4B12

P7 = A21T4



U1 = P3 + P5

U2 = P1 − U1

U3 = U1 − P2

C11 = P4 + P5

C12 = U3 − P6

C21 = U2 − P7

C22 = P2 + U2

 C =

(
C11 C12

C21 C22

)
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What’s new in the new sequence

The new sequence is:

equivalent to Winograd’s variant for plain product;

symmetric;

optimal for squaring;

number of multiplications and squarings is minimal (7),
number of multiplications not being squarings is minimal (3),
because of symmetry pre-computations on the operand is
halved.

Squaring method additions multiplications squaring
Näıve 4 6 2
Strassen’s 13 6 1
Winograd’s 15 6 1
New sequence 11

(

3

+

4

) = 7
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What’s new in the new sequence

The new sequence is:

equivalent to Winograd’s variant for plain product;

symmetric;

optimal for squaring;

number of multiplications and squarings is minimal (7),
number of multiplications not being squarings is minimal (3),
because of symmetry pre-computations on the operand is
halved.

Squaring method additions multiplications squaring
Näıve 4 6 2
Strassen’s 13 6 1
Winograd’s 15 6 1
New sequence 11 (3 + 4) = 7
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The new sequence for C = A2

A =

(
A11 A12

A21 A22

)
S1=A22 + A12

S2=A22 − A21

S3=S2 + A12

S4=S3 − A11



P1 = S1S1

P2 = S2S2

P3 = S3S3

P4 = A11A11

P5 = A12A21

P6 = S4A12

P7 = A21S4



U1 = P3 + P5

U2 = P1 − U1

U3 = U1 − P2

C11 = P4 + P5

C12 = U3 − P6

C21 = U2 − P7

C22 = P2 + U2

 C =

(
C11 C12

C21 C22

)
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The three products. . .

Thanks to symmetry, when dealing with the three products, we can
keep using a half the pre-computation on operands, and this is true
for any recursion level. 

P5 = A12A21

P6 = S4A12

P7 = A21S4

Matrix multiplication is not commutative, but the sequence is
symmetric
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Reduce linear operations for chain products

When one needs to compute M3 or M1M2M3, one usually need
some intermediate results: M2M, (M1M2)M3.

(
M11 M12

M21 M22

)


S1  P1

S2  P2

S3  P3

S4  P4

M11  P5

M12  P6

M21  P7



(
M̃11 M̃12

M̃21 M̃22

)


S̃1  P̃1

S̃2  P̃2

S̃3  P̃3

S̃4  P̃4

M̃11  P̃5

M̃12  P̃6

M̃21  P̃7

If we don’t need the intermediate value, we should skip it.
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Reduce linear operations for chain products

When one needs to compute M3 or M1M2M3, one usually need
some intermediate results: M2M, (M1M2)M3.

(
M11 M12

M21 M22

)


S1  P1

S2  P2

S3  P3

S4  P4

M11  P5

M12  P6

M21  P7



(
M̃11 M̃12

M̃21 M̃22

)


S̃1  P̃1

S̃2  P̃2

S̃3  P̃3

S̃4  P̃4

M̃11  P̃5

M̃12  P̃6

M̃21  P̃7

If we don’t need the intermediate value, we should skip it.
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Reduce linear operations for chain products

When one needs to compute M3 or M1M2M3, one usually need
some intermediate results: M2M, (M1M2)M3.

(
M11 M12

M21 M22

)


S1  P1

S2  P2

S3  P3

S4  P4

M11  P5

M12  P6

M21  P7



(
M̃11 M̃12

M̃21 M̃22

)


S̃1  P̃1

S̃2  P̃2

S̃3  P̃3

S̃4  P̃4

M̃11  P̃5

M̃12  P̃6

M̃21  P̃7

If we don’t need the intermediate value, we should skip it.
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How to skip the unneeded values

The linear post- and pre- computation can collapse.

M̃11 = P4 + P5

M̃12 = P3 − P2 − P6 + P5

S̃2 = P2 + P7

S̃1 = P1 − P6

S̃3 = S̃2 + M̃12

M̃21 = S̃1 − S̃3

S̃4 = S̃3 − M̃11

Depending on products

Depending on other values

Before we had 7 + 4 = 11 operations, now we have 9.

Moreover we can group operations . . .
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How to skip the unneeded values

The linear post- and pre- computation can collapse.

M̃11 = P4 + P5

M̃12 = P3 − P2 − P6 + P5

S̃2 = P2 + P7

S̃1 = P1 − P6

S̃3 = S̃2 + M̃12

M̃21 = S̃1 − S̃3

S̃4 = S̃3 − M̃11

Depending on products

Depending on other values

Before we had 7 + 4 = 11 operations, now we have 9.
Moreover we can group operations . . .
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How to save linear operations
with no more memory needs

Before we had an unneeded value

, now we have none.

(
M11 M12

M21 M22

)


S1  P1

S2  P2

S3  P3

S4  P4

M11  P5

M12  P6

M21  P7



(
M̃11 M̃12

M̃21 M̃22

)


S̃1  P̃1

S̃2  P̃2

S̃3  P̃3

S̃4  P̃4

M̃11  P̃5

M̃12  P̃6

M̃21  P̃7

We save 2 operations by replacing the sequences.
Because of symmetry of the method we do not care of
computation order: (M1M2)M3 or M1(M2M3).
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How to save linear operations
with no more memory needs

Before we had an unneeded value, now we have none.

(
M11 M12

M21 M22

)


S1  P1

S2  P2

S3  P3

S4  P4

M11  P5

M12  P6

M21  P7



(
M̃11 M̃12

S̃2 S̃1

)


S̃1  P̃1

S̃2  P̃2

S̃3  P̃3

S̃4  P̃4

M̃11  P̃5

M̃12  P̃6

M̃21  P̃7

We save 2 operations by replacing the sequences.
Because of symmetry of the method we do not care of
computation order: (M1M2)M3 or M1(M2M3).
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Intermediate and standard representation are linked

The intermediate representation is obtained from the standard one
with a simple linear function.

ψ

((
A11 A12

A21 A22

))
=

(
A11 A12

A22 − A21 A22 + A12

)
ψ−1

((
A11 A12

S2 S1

))
=

(
A11 A12

(S1−A12)− S2 (S1−A12)

)
This representation is optimal

it uses as much memory as standard one;

the number of linear operation for Strassen-like multiplications
is minimal.

It’s linear: it can be used for general polynomial computations too.
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Matrix-Matrix Multiplication
Time ratio with respect to näıve multiplication (2× 2)
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Matrix Squaring
Time ratio with respect to näıve squaring (2× 2)
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Appendix Q
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Current implementations of the new sequence

1 M4RI: for big matrices in GF(2) (early 2009);

2 GMP: for 2× 2 matrices, (used in HGCD code);

3 fastmm library: matrices with float entries (licence problems);

None of them implement chain product nor any trick for powers,
nevertheless they give some small but measurable improvement
with respect to previous Strassen-Winograd implementations.
(There are others good side-effects of symmetry)
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Conclusions

A new Strassen-like sequence was proposed. It is:

symmetric;

optimal for plain product (not new);

optimal for squaring;

optimal for chain products.

Software implementation is as easy as Winograd’s variant.
Consider implementing it if you need a variant of Strassen.
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That’s all !

Thank you very much for your kind attention

Questions?

Presentation will be available on the web:
http://bodrato.it/papers/#ISSAC2010,

released under a CreativeCommons BY-NC-SA licence.

Full paper too is available on web.
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Commutative matrix squaring
Winograd’s variant

back to index
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Matrix 2× 2 squaring, exploiting commutativity

The simple formula for 2× 2 matrices(
a b
c d

)2

=

(
a2 + bc b(a + d)
c(a + d) d2 + bc

)
It can be generalised obtaining:

d squares, d3− d2−
(

d

2

)
products, d3− d2−

(
d

2

)
additions,

but it is fast only for 2× 2 or 3× 3 matrices.
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Winograd’s variant
No symmetry. . . back to new sequence

A=

(
A11 A12

A21 A22

)
S1=A21 + A22

S2=S1 − A11

S3=A11 − A21

S4=A12 − S2

B =

(
B11 B12

B21 B22

)
T1=B12 − B11

T2=B22 − T1

T3=B22 − B12

T4=B21 − T2



P1 = A11B11

P2 = A12B21

P3 = S1T1

P4 = S2T2

P5 = S3T3

P6 = S4B22

P7 = A22T4



U1 = P1 + P4

U2 = U1 + P5

U3 = U1 + P3

C11 = P2 + P1

C12 = U3 + P6

C21 = U2 + P7

C22 = U3 + P5

 C =

(
C11 C12

C21 C22

)
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