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Long integer and polynomial multiplication
Some notation

Let R be Z or Z[X ],

a(x) =
da∑

i=0

aix
i , b(x) =

db∑
i=0

bix
i ∈ R[x ]

We want to compute their product

c(x) =
dc∑
i=0

cix
i ∈ R[x ]

deg(a) = da ; deg(b) = db ; deg(c) = dc = da + db
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Long integer and polynomial multiplication
The classical Toom-Cook approach

Toom-Cook methods concern univariate polynomials
multiplication.

Toom-n method refers to factors having n parts each
(degrees da = db = n − 1).

It is an absolutely standard procedure to apply these methods
to general univariate polynomials and long integers
multiplication by a simple base changing.
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Multiplication algorithms

Many algorithms are known for polynomial multiplication.

Näıve O(d2)

Karatsuba (1962) O(d log2 3)

Toom-Cook-n (1963) O(d logn(2n−1))

Schönhage-Strassen (1971) O(d log d log log d)

Each one has a different complexity, and its own range where it is
the fastest one.
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Multiplication algorithms

Many algorithms are known for polynomial multiplication.

Näıve O(d2)

Karatsuba (1962) O(d log2 3)

Toom-Cook-n (1963) O(d logn(2n−1))

Schönhage-Strassen (1971) O(d log d log log d)

Each one has a different complexity, and its own range where it is
the fastest one.

In 2007, Martin Fürer announced a new algorithm that should have
a better asymptotic complexity.
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Multiplication algorithms

Many algorithms are known for polynomial multiplication.

Näıve O(d2)

Karatsuba (Toom-2) (1962) O(d log2 3)

Toom-Cook-n (1963) O(d logn(2n−1))

Schönhage-Strassen (1971) O(d log d log log d)

Each one has a different complexity, and its own range where it is
the fastest one.

We aim to analyse the optimality of Toom-Cook methods within
their respective ranges of applicability.
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Recall on Toom-n algorithm
3 (core) phases

1 Splitting: choose a base and split

2 Evaluation

: 2 × matrix-vector multiplication

3 Multiplication

: (2n − 1) × smaller multiplication

4 Interpolation

: inverse matrix-vector multiplication

5 Recomposition: shift and add.

Phase 2, some linear algebra

Evaluate polynomials a(x), b(x) in 2n− 1 different points {vi} ∈ Z.

This can be obtained by multiplying a (non square) Vandermonde
matrix by the vector of coefficients.
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Recall on Toom-n algorithm
3 (core) phases

1 Splitting: choose a base and split

2 Evaluation: 2 × matrix-vector multiplication

3 Multiplication

: (2n − 1) × smaller multiplication

4 Interpolation

: inverse matrix-vector multiplication

5 Recomposition: shift and add.

Phase 3, recursive application see unbalanced

Evaluate the product by multiplying factors evaluations.
c(vi ) = a(vi ) · b(vi )

(degree n − 1) × (degree n − 1)  degree 2n − 2.
(n parts) × (n parts)  2n − 1 parts. ⇒ 2n − 1 multiplications.
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Recall on Toom-n algorithm
3 (core) phases

1 Splitting: choose a base and split

2 Evaluation: 2 × matrix-vector multiplication

3 Multiplication: (2n − 1) × smaller multiplication

4 Interpolation

: inverse matrix-vector multiplication

5 Recomposition: shift and add.

Phase 4, some more linear algebra

Interpolate to obtain coefficient of the product polynomial.

Obtain this by multiplying the inverse of a (square) Vandermonde
matrix by the vector of evaluations.
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Recall on Toom-n algorithm
3 (core) phases

1 Splitting: choose a base and split

2 Evaluation: 2 × matrix-vector multiplication

3 Multiplication: (2n − 1) × smaller multiplication

4 Interpolation: inverse matrix-vector multiplication

5 Recomposition: shift and add.

Phases 2 and 4 are critical

Splitting order n results in (2n − 1) multiplications in phase 3, and
asymptotic behaviour Θ(d logn(2n−1)). Rigidly.
The hidden constant is determined by the evaluation/interpolation
points and operation sequences for phases 2 and 4.
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Unbalanced operands
Factors with different degrees

Toom-(n+m)/2 back to balanced

(degree n − 1) × (degree m − 1)  degree n + m − 2
(n parts) × (m parts)  n + m − 1 parts

Toom methods can thus be applied also to polynomials with
different degrees. The evaluation phase depends on m and n
separately, while the interpolation phase only on n + m.

Toom-2.5 Unbalanced Toom-3

(deg 2)× (deg 1)  deg 3 (deg 3)× (deg 1)  deg 4
(3 parts)× (2 parts)  4 parts (4 parts)× (2 parts)  5 parts
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Some examples for basic cases

The matrices of Toom-2.5 and Toom-3 interpolation phase are

A2.5 =

 1 0 0 0
−1 1 −1 1

1 1 1 1
0 0 0 1

 ; A3 =


1 0 0 0 0

16 8 4 2 1
1 −1 1 −1 1
1 1 1 1 1
0 0 0 0 1



Theorem

For n > 3, det(An) is not a power of 2 (one division is needed).

Theorem

Let An be generated by {∞, 1,−1, v4, . . . , v2n−2, 0}. At most
2n − 5 divisions are needed in the interpolation phase.
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The setting

GOAL: we want the best (most efficient) sequence of elementary
operations on rows to transform matrix An into identity.

There are ∞ possible inversion sequences (IS).

We restrict the admissible operations by defining two criteria.

They define a finite “model” such that an exhaustive search is
possible.

We describe this model as a weighted graph.

The goal is reached by solving a shortest path problem on the
graph.
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Some useful definitions

For a square matrix M:
M[i , j ] : the entry in position (i , j)

M(i) : the i th line

M [j] : the j th column

Definition

The support of M(i) is the set s(M(i)) of column indexes j ∈ N
such that M[i , j ] 6= 0. Similarly for M [i ].
The support of M is the set s(M) of pairs (i , j) ∈ N×N such that
M[i , j ] 6= 0.

#M(i) = cardinality of s(M(i)). Similarly for #M [i ] and #M.
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The model criteria

· · · → M
(i)−→ M̃ → · · · → I

(A) Support reduction :(
#M̃(i) < #M(i)

)
∧
(
M[i , j ] = 0⇒ M̃[i , j ] = 0

)
At least one more zero entry. “Old” 0 entries are not
modified.

(B) Regularisation : M̃[i , j ]/M[i ′, j ] = M̃[i , j ′]/M[i ′, j ′].
More entries differing from the corresponding ones in
another line by a common multiplicative factor than
before.

Example (A,B): in A3,

(16 8 4 2 1) + 2(1 −1 1 −1 1)→(18 6 6 0 3)

( 1 1 1 1 1)
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Operations we count on for linear algebra

Linear combinations

li ← (ci · li + cj · lj)/di , where ci , cj , di are “small” constants.
“small” actually means fixed: asymptotically small. Typically fits in 1 WORD.

Basic on long operands: linear operations

|ci | |cj | di cost

Add/Sub 1 1 1 STEP
l.c of first type 1 2k 1 STEP + ( 1 2)

2k 1 1 STEP + ( 1 2)
l.c of second type 1 6= 2k 1 STEP + ( 1 X)

6= 2k 1 1 STEP + ( 1 X)
Division by 2k (shift) 1 0 2k SHIFT
Exact division 1 0 6= 2k DIV
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The Toom graph

Let G = (V , E , w) the weighted graph such that

1 V is the set of matrices obtained by An with →∗ subject to
criteria (A) and (B).

2 E is the set of edges such that (M, M̃) ∈ E ⇔ M̃ can be
obtained by M by means of an admissible linear combination.

Definition (weight function)

For ε ∈ E , w(ε) is the cost of the corresponding linear

combination. For a chain C, w(C) =
∑
ε∈C

w(ε).

w(M) = min
C(M,I )

{w(C)}
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Example (Karatsuba graph): Let (v1 =∞, v2 = 1, v3 = 0)(
1 0 0
1 1 1
0 0 1

)
ε1−−−−→

(
1 0 0
0 1 1
0 0 1

)
ε2

y yε3(
1 0 0
1 1 0
0 0 1

)
ε4−−−−→ I

Example (Knuth graph): Let (v1 =∞, v2 = −1, v3 = 0)(
1 0 0
1−1 1
0 0 1

)
ε1−−−−→

(
1 0 0
0−1 1
0 0 1

)
ε2

y yε3(
1 0 0
1−1 0
0 0 1

)
ε4−−−−→ I
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Heuristics for search pruning

We use a recursive function f to visit G , keeping some vertexes for
some time to benefit from already made evaluations.

We make estimates (from below) e(M) of w(M) by
exploiting various heuristics (matrix support cardinality,
determinant value, submatrices, etc).

We introduce a threshold t (parameter for f ) to avoid
analysing not interesting subgraphs. If e(M) > t the subgraph
under M is not analysed (no better IS can be drawn from it).

t is updated while f visits G : if M
ε−→ M̃ and f (M, t) calls

itself, then the recursive call is f (M̃, t − w(ε)).
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Toom-2.5 optimal IS

A2.5 generated by {∞,−1, 1, 0}, with det(A2.5) = 2.
A Toom-graph with 17 nodes was built. The weight is

4 · STEP + SHIFT

A2.5 =

 1 0 0 0
−1 1−1 1

1 1 1 1
0 0 0 1

2−=3
=⇒

1 0 0 0
0 2 0 2
1 1 1 1
0 0 0 1

2�(1)

=⇒
3−=1

1 0 0 0
0 1 0 1
0 1 1 1
0 0 0 1

3−=2
=⇒

2−=4
I

There are 16 minimal equivalent IS.
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Toom-3 optimal IS

A3 generated by {∞, 2,−1, 1, 0}, with det(A3) = 12.
The IS implemented in GMP 4.2.1 uses both criteria. Its weight is

wGMP = 8 · STEP + DIV + 2 · SHIFT + 2 · ( 1 2)

The solution we found uses only criterion (A) and its weight is

wBZ = 8 · STEP + DIV + SHIFT + min( 1 X, SHIFT) + 1 2

depending on which of 1 X, SHIFT is smaller.
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Toom-3 optimal IS, when SHIFT < 1 X

A3 =


1 0 0 0 0

16 8 4 2 1
1 1 1 1 1
1 -1 1 -1 1
0 0 0 0 1

 2−=4
=⇒


1 0 0 0 0

15 9 3 3 0
1 1 1 1 1
1 -1 1 -1 1
0 0 0 0 1

 4=3−4
=⇒


1 0 0 0 0

15 9 3 3 0
1 1 1 1 1
0 2 0 2 0
0 0 0 0 1

3−=5
=⇒


1 0 0 0 0

15 9 3 3 0
1 1 1 1 0
0 2 0 2 0
0 0 0 0 1

2/=(3)

=⇒
4�(1)


1 0 0 0 0
5 3 1 1 0
1 1 1 1 0
0 1 0 1 0
0 0 0 0 1

 2−=3
=⇒


1 0 0 0 0
4 2 0 0 0
1 1 1 1 0
0 1 0 1 0
0 0 0 0 1

 2�(1)

=⇒


1 0 0 0 0
2 1 0 0 0
1 1 1 1 0
0 1 0 1 0
0 0 0 0 1

 3−=4
=⇒


1 0 0 0 0
2 1 0 0 0
1 0 1 0 0
0 1 0 1 0
0 0 0 0 1

2−=(2)1

=⇒
3−=1


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 1 0 1 0
0 0 0 0 1

4−=2
=⇒ I
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Toom-3.5 (4× 3 or 5× 2 unbalanced multiplications)

A3.5 generated by {∞, 2,−2, 1,−1, 0}. The weight is

12 · STEP + 2 · DIV + 2 · SHIFT + 2 · ( 1 2)

A3.5 =


1 0 0 0 0 0

32 16 8 4 2 1
−32 16 −8 4 −2 1

1 1 1 1 1 1
−1 1 −1 1 −1 1

0 0 0 0 0 1


One regularisation step (B) is needed.
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Toom-4 (4× 4 or 5× 3 or 6× 2)

A4 generated by

{
∞, 2, 1,−1,

1

2
,−1

2
, 0

}
. The weight is

18·STEP + 3·DIV + SHIFT + min ( 1 X , SHIFT) + 2·( 1 X) + 4·( 1 2)

A4 =



1 0 0 0 0 0 0
64 32 16 8 4 2 1

1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1
1 2 4 8 16 32 64
1 −2 4 −8 16 −32 64
0 0 0 0 0 0 1


One regularisation step (B) is used.
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Toom-4.5 (5× 4 or 6× 3 or 7× 2)

A4.5 generated by

{
∞,−1,−2,

1

2
, 1, 2,−1

2
, 0

}
. The weight is

22 · STEP + 4 · DIV + SHIFT + 3 ·( 1 X) + 6 ·( 1 2)

A4.5 =



1 0 0 0 0 0 0 0
−1 1 −1 1 −1 1 −1 1
−128 64 −32 16 −8 4 −2 1

1 2 4 8 16 32 64 128
1 1 1 1 1 1 1 1

128 64 32 16 8 4 2 1
1 −2 4 −8 16 −32 64 −128
0 0 0 0 0 0 0 1



Marco Bodrato, Alberto Zanoni Towards Optimal Toom-Cook Matrices



Toom-Cook multiplication methods
Toom matrices

Results

Toom-2.5 and Toom-3
Higher Toom-Cook methods
Some graphics

Toom-5 (5× 5 or 6× 4 or 7× 3 or 8× 2)

A5 generated by

{
∞,−2,

1

2
, 4, 2,−1, 1,−1

2
, 0

}
. The weight is

32 · STEP + 5 · DIV + 2 · SHIFT + 6 ·( 1 X) + 8 ·( 1 2)

A5 =



1 0 0 0 0 0 0 0 0
256 −128 64 −32 16 −8 4 −2 1

1 2 4 8 16 32 64 128 256
48 47 46 45 256 64 16 4 1

256 128 64 32 16 8 4 2 1
1 −1 1 −1 1 −1 1 −1 1
1 1 1 1 1 1 1 1 1
1 −2 4 −8 16 −32 64 −128 256
0 0 0 0 0 0 0 0 1


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Toom-3 gain

We implemented new GMP code for Toom-3 with the new IS.

 95

 96

 97

 98

 99

 100

 101

 0  500  1000  1500  2000  2500  3000  3500

Toom-3 new/old %

100 %
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Related results

Complete matrix inversion sequences for
Toom-3.5, Toom-4, Toom-4.5, Toom-5 in
What about Toom-Cook matrices optimality ?
Technical Report 605, Centro ”Vito Volterra”, Università di Roma
”Tor Vergata”, October 2006.
http://bodrato.it/papers/#CIVV2006.

Analysis for evaluation sequences,
result for Toom-3 in
Towards Optimal Toom-Cook Multiplication for Univariate
and Multivariate Polynomials in Characteristic 2 and 0
presented at WAIFI 2007, Madrid, España, June 21-22, 2007.
http://bodrato.it/papers/#WAIFI2007.
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That’s all folks !

Thank you very much for your very kind attention

Questions ?

Presentation will be available on the web:
http://bodrato.it/papers/#ISSAC2007,

released under a CreativeCommons BY-NC-SA licence.
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