Long Integers and Polynomial Evaluation with Estrin's Scheme

Marco Bodrato

Via S.Marino, 118
10137 Torino, Italy
bodrato@mail.dm.unipi.it

Alberto Zanoni

Dipartimento di Scienze Statistiche
Università "Sapienza"
P.le Aldo Moro 5-00185 Roma, Italy zanoni@volterra.uniroma2.it

September $26^{\text {th }}, 2011$ - Timişoara, Romania

Summary

(1) Polynomial evaluation

- Notation and costs
- Multiplication algorithms and complexity
- Ruffini-Horner method
(2) Estrin approach
- Description
- Comparing Ruffini-Horner and Estrin
- Threshold issues
(3) Variants, unbalancedness, sparsity
- Estrin variants: F and BZ
- Thresholds and sparse polynomials
- Conclusions

Long integer and polynomial evaluation

Some notation and costs
Problem: Evaluate a polynomial in a long integer x with $|x| \gg 1$

- $p(x)=\sum_{i=0}^{d} a_{i} x^{i} \in \mathbb{Z}[x] \quad: \quad d=\operatorname{deg}(p) \quad ; \quad D=d+1$.

Size of a_{i} and $x: \simeq\left[\log _{2}\left(a_{i}\right)\right] \simeq\left[\log _{2}(x)\right]=n$

Long integer and polynomial evaluation

Some notation and costs
Problem: Evaluate a polynomial in a long integer x with $|x| \gg 1$

- $p(x)=\sum_{i=0}^{d} a_{i} x^{i} \in \mathbb{Z}[x] \quad: \quad d=\operatorname{deg}(p) \quad ; \quad D=d+1$.

Size of a_{i} and $x: \simeq\left[\log _{2}\left(a_{i}\right)\right] \simeq\left[\log _{2}(x)\right]=n$

- Consider two long integers with m, n digits in base-2 representation (bits), respectively:

Operation costs:

$$
\begin{array}{ll}
M(m, n): \text { multiplication } & M(n)=M(n, n) \\
A(m, n): \text { addition/subtraction } & A(n)=A(n, n)
\end{array}
$$

One can assume $A(m, n)=A(\min (m, n))$

Polynomial evaluation

Costs

- Ruffini-Horner : d multiplications, d additions

$$
p(x)=\left(\left(\cdots\left(\left(a_{d} x+a_{d-1}\right) x+a_{d-2}\right) x+\cdots\right) x+a_{1}\right) x+a_{0}
$$

- Motkin'55, Belaga'61, Pan'66 : by preconditioning, around $d / 2$ multiplications are sufficient
- Paterson, Stockmeyer '73: $\mathrm{O}(\sqrt{d})$ multiplications

Polynomial evaluation

Costs

- Ruffini-Horner : d multiplications, d additions

$$
p(x)=\left(\left(\cdots\left(\left(a_{d} x+a_{d-1}\right) x+a_{d-2}\right) x+\cdots\right) x+a_{1}\right) x+a_{0}
$$

- Motkin'55, Belaga'61, Pan'66 : by preconditioning, around $d / 2$ multiplications are sufficient
- Paterson, Stockmeyer '73: $\mathrm{O}(\sqrt{d})$ multiplications

Above complexities are measured just counting the number of multiplications (i.e. considering every product having constant cost). For "growing" factors (e.g. long integers), this is not sufficient to understand global complexity.

Evaluation of polynomials

Papers considering x and/or a_{i} as long integers:

- Akritas, Danielopulos '80 : polynomial translation
- Danielopulos '82 : polynomial and derivatives evaluation
... but only "schoolbook" O(n^{2}) multiplication is considered.
Actually there are many different subquadratic multiplication methods. What happens if they are used?

Multiplication algorithms

Many algorithms are known for long integer multiplication.

- Schoolbook

Each one has a different complexity, and its own range where it is the fastest one.

Multiplication algorithms

Many algorithms are known for long integer multiplication.

- Schoolbook
- Karatsuba (1962)
$\mathrm{O}\left(n^{2}\right)$
$\mathrm{O}\left(n^{\log _{2} 3}\right)$

Each one has a different complexity, and its own range where it is the fastest one.

Multiplication algorithms

Many algorithms are known for long integer multiplication.

- Schoolbook
- Karatsuba (Тоом-2) (1962)
- Тоом-Cook-k (1963)

$$
\begin{array}{r}
\mathrm{O}\left(n^{2}\right) \\
\mathrm{O}\left(n^{\log _{2} 3}\right) \\
\mathrm{O}\left(n^{\log _{k}(2 k-1)}\right)
\end{array}
$$

Each one has a different complexity, and its own range where it is the fastest one.

Multiplication algorithms

Many algorithms are known for long integer multiplication.

- Schoolbook
- Karatsuba (Тоом-2) (1962)
- Тоом-Cook-k (1963)
- Schönhage-Strassen (1971)
$\mathrm{O}\left(n^{2}\right)$
$\mathrm{O}\left(n^{\log _{2} 3}\right)$
$\mathrm{O}\left(n^{\log _{k}(2 k-1)}\right)$
$\mathrm{O}(n \log n \log \log n)$

Each one has a different complexity, and its own range where it is the fastest one.

Multiplication algorithms

Many algorithms are known for long integer multiplication.

- Schoolbook
- Karatsuba (Тоом-2) (1962)
- Тоом-Cook-k (1963)
- Schönhage-Strassen (1971)
- Fürer (2007)

$$
\begin{array}{r}
\mathrm{O}\left(n^{2}\right) \\
\mathrm{O}\left(n^{\log _{2} 3}\right) \\
\mathrm{O}\left(n^{\log _{k}(2 k-1)}\right)
\end{array}
$$

$\mathrm{O}(n \log n \log \log n)$
$\mathrm{O}\left(n \log n 2^{\log ^{*} n}\right)$

Each one has a different complexity, and its own range where it is the fastest one.

Multiplication algorithms

Many algorithms are known for long integer multiplication.

- Schoolbook
- Karatsuba (Тоом-2) (1962)
- Тоом-Cook-k (1963)
- Schönhage-Strassen (1971)
- Fürer (2007)

$$
\begin{array}{r}
\mathrm{O}\left(n^{2}\right) \\
\mathrm{O}\left(n^{\log _{2} 3}\right) \\
\mathrm{O}\left(n^{\log _{k}(2 k-1)}\right)
\end{array}
$$

$\mathrm{O}(n \log n \log \log n)$
$\mathrm{O}\left(n \log n 2^{\log ^{*} n}\right)$

Each one has a different complexity, and its own range where it is the fastest one.

Balanced approach : factors have the same number of bits (n) Unbalanced approach : $m \neq n$
[B., Z. '07: Toom-($k+1 / 2)$]

Detailing Ruffini-Horner method

Unbalanced multiplications appear

$$
\begin{aligned}
& \mathrm{i}=d ; \text { result }=a_{i} ; \\
& \text { while }(\mathrm{i}>0) \text { do } \\
& \mathrm{i} \leftarrow \mathrm{i}-1 ; \\
& \text { result } \leftarrow \text { result } \cdot \mathrm{x} ; \\
& \text { result } \leftarrow \text { result }+a_{i} ;
\end{aligned}
$$

Detailing Ruffini-Horner method

Unbalanced multiplications appear

$$
\begin{aligned}
& \mathrm{i}=d ; \text { result }=a_{i} ; \\
& \text { while }(\mathrm{i}>0) \text { do } \\
& \mathrm{i} \leftarrow \mathrm{i}-1 ; \\
& \text { result } \leftarrow \text { result } \cdot \mathrm{x} ; \\
& \text { result } \leftarrow \text { result }+a_{i} ;
\end{aligned}
$$

result grows by $\sim\left[\log _{2}(x)\right]$ bits at every iteration x does not grow

More and more unbalanced multiplication

Possibility of using subquadratic methods is not fully exploited $):$

Estrin's scheme (1960) - augmenting parallelism

Splits $p(x)$ focusing on power of 2 exponents. Let $\Delta=2^{\left.\log _{2} d\right]}$:

$$
p(x)=\left(\sum_{i=\Delta}^{d} a_{i} x^{i-\Delta}\right) x^{\Delta}+\left(\sum_{i=0}^{\Delta-1} a_{i} x^{i}\right)=p_{1}(x) x^{\Delta}+p_{0}(x)
$$

The same approach is applied recursively to $p_{0}(x)$ and $p_{1}(x)$.

d	$p(x)$
2	$\left(a_{2}\right) x^{2}+a_{1} x+a_{0}$
3	$\left(a_{3} x+a_{2}\right) x^{2}+a_{1} x+a_{0}$
4	$\left(a_{4}\right) x^{4}+\left(a_{3} x+a_{2}\right) x^{2}+a_{1} x+a_{0}$
5	$\left(a_{5}+a_{4}\right)^{4}+\left(a_{3} x+a_{2}\right) x^{2}+a_{1} x+a_{0}$
6	$\left(\left(a_{6}\right) x^{2}+a_{5} x+a_{4}\right) x^{4}+\left(a_{3} x+a_{2}\right) x^{2}+a_{1} x+a_{0}$
7	$\left(\left(a_{7} x+a_{6}\right) x^{2}+a_{5} x+a_{4}\right) x^{4}+\left(a_{3} x+a_{2}\right) x^{2}+a_{1} x+a_{0}$
8	$\left(a_{8}\right) x^{8}+\left(\left(a_{7} x+a_{6}\right) x^{2}+a_{5} x+a_{4}\right) x^{4}+\left(a_{3} x+a_{2}\right) x^{2}+a_{1} x+a_{0}$
\vdots	\vdots

Estrin's scheme (example)

Two computations: 1) Products
2) Successive squares of x

Case $d=7 \quad$ Products (and sums, too) Squares

Estrin's scheme (example)

Two computations: 1) Products
2) Successive squares of x

Case $d=7 \quad$ Products (and sums, too) Squares

Products are now balanced.
Subquadratic methods can be more profitably applied \odot

Ruffini-Horner (RH) versus Estrin

Compare multiplication complexities for evaluation:

$$
\begin{aligned}
E_{R H} & =\sum_{i=1}^{D-1} M(i n, n) \simeq \sum_{i=1}^{D-1} i M(n, n)=M(n) \sum_{i=1}^{D-1} i=M(n) \frac{D(D-1)}{2} \\
E_{E} & =E_{E}^{(p)}+E_{E}^{(s)}
\end{aligned}
$$

With Тоом-Cook methods

$$
\left[\begin{array}{c}
M(k n) \simeq(2 k-1) M(n) \\
S(k n) \simeq(2 k-1) S(n)
\end{array}\right]
$$

in Estrin's scheme one obtains...

Let $\alpha=\log _{k}(2 k-1)$ and $D=2^{\delta}$: product complexity

$$
\begin{aligned}
E_{E}^{(p)} & \simeq \sum_{i=0}^{\delta-1} \frac{D}{2^{i+1}}(2 k-1) M\left(\frac{2^{i} n}{k}\right) \simeq \frac{D}{2} \sum_{i=0}^{\delta-1} \frac{(2 k-1)^{2}}{2^{i}} M\left(\frac{2^{i} n}{k^{2}}\right) \simeq \cdots \\
& \simeq \frac{D}{2} \sum_{i=0}^{\delta-1} \frac{(2 k-1)^{h}}{2^{i}} M\left(\frac{2^{i} n}{k^{h}}\right)=\left[k^{h}=2^{i} \Rightarrow h=i \log _{k} 2\right]= \\
& =\frac{D}{2} \sum_{i=0}^{\delta-1} \frac{(2 k-1)^{i \log _{k} 2}}{2^{i}} M(n)= \\
& =M(n) \frac{D}{2} \sum_{i=0}^{\delta-1}\left(\frac{(2 k-1)^{\log _{k} 2}}{2}\right)^{i}=\left[\alpha=\log _{k}(2 k-1)\right]= \\
& =M(n) \frac{D}{2} \frac{\left(2^{\alpha-1}\right)^{\delta}-1}{2^{\alpha-1}-1}=M(n) \frac{D}{2} \frac{D^{\alpha-1}-1}{2^{\alpha-1}-1}
\end{aligned}
$$

Let $\alpha=\log _{k}(2 k-1)$ and $D=2^{\delta}$: squaring complexity

$$
\begin{aligned}
E_{E}^{(s)} & =\sum_{i=0}^{\delta-2} S\left(2^{i} n\right) \simeq \sum_{i=0}^{\delta-2}(2 k-1) S\left(\frac{2^{i} n}{k}\right) \simeq \cdots \\
& \simeq \sum_{i=0}^{\delta-2}(2 k-1)^{h} S\left(\frac{2^{i} n}{k^{h}}\right)=\left[k^{h}=2^{i} \Rightarrow h=i \log _{k} 2\right] \\
& =\sum_{i=0}^{\delta-2}\left[(2 k-1)^{\log _{k} 2}\right]^{i} S(n)=S(n) \sum_{i=0}^{\delta-2}\left(2^{\alpha}\right)^{i}= \\
& =S(n) \frac{\left(2^{\alpha}\right)^{\delta-1}-1}{2^{\alpha}-1}=\frac{S(n)}{2^{\alpha}-1}\left[\left(\frac{D}{2}\right)^{\alpha}-1\right]
\end{aligned}
$$

For the complexity of $S(n)$ we can write $S(n)=\mathrm{O}(M(n))$ the result is

$$
\begin{aligned}
E_{R H} & =\mathrm{O}\left(M(n) \cdot D^{2}\right) \simeq \mathrm{O}\left(M_{\text {quadratic }}(D n)\right) \\
E_{E} & =\mathrm{O}\left(M(n) \cdot D^{\alpha}\right) \simeq \mathrm{O}\left(M_{\text {fast }}(D n)\right)
\end{aligned}
$$

Where α is the exponent given by the sub-quadratic multiplication algorithm used.

> If coefficients a_{i} are "small" $-\mathrm{O}(1)$ bits - The product costs slightly changes, but the order of magnitude doesn't.

Next slide: timings using PARI/GP to compare performances

Polynomial evaluation
Estrin approach
Variants, unbalancedness, sparsity

Graphical comparison: Estrin/RH timings (\%)

Estrin convenience threshold
 $(d=2)$

Basic case with Ruffini-Horner $\left[\left(a_{2} x+a_{1}\right) x+a_{0}\right]$

$$
\begin{aligned}
E_{R H} & =(M(n)+A(n))+M(2 n, n)+A(n) \\
& \simeq M(2 n, n)+M(n)+2 A(n)
\end{aligned}
$$

Estrin $\left[a_{2}\left(x^{2}\right)+\left(a_{1} x+a_{0}\right)\right]$ asks instead for

$$
\begin{aligned}
E_{E} & =(M(n)+A(n))+(S(n)+M(2 n, n))+A(2 n) \\
& \simeq M(2 n, n)+M(n)+2 A(n)+S(n)+A(n)
\end{aligned}
$$

If we keep on assuming $a_{i} \simeq x, R H$ is better, for odd degrees.

Estrin method: the F (fusion) variant

Example : If $D=2^{\delta}+1$ then $x^{2^{\delta}}$ is computed "only" to multiply $a_{2 \delta}$ by it. Can we skip the head coefficient?

\boldsymbol{d}	$p(x)$
2	$\left(a_{2}\right) x^{2}+a_{1} x+a_{0}$
3	$\left(a_{3} x+a_{2}\right) x^{2}+a_{1} x+a_{0}$
4	$\left(a_{4}\right) x^{4}+\left(a_{3} x+a_{2}\right) x^{2}+a_{1} x+a_{0}$
5	$\left(a_{5} x+a_{4}\right) x^{4}+\left(a_{3} x+a_{2}\right) x^{2}+a_{1} x+a_{0}$
6	$\left(\left(a_{6}\right) x^{2}+a_{5} x+a_{4}\right) x^{4}+\left(a_{3} x+a_{2}\right) x^{2}+a_{1} x+a_{0}$
7	$\left(\left(a_{7} x+a_{6}\right) x^{2}+a_{5} x+a_{4}\right) x^{4}+\left(a_{3} x+a_{2}\right) x^{2}+a_{1} x+a_{0}$
8	$\left(a_{8}\right) x^{8}+\left(\left(a_{7} x+a_{6}\right) x^{2}+a_{5} x+a_{4}\right) x^{4}+\left(a_{3} x+a_{2}\right) x^{2}+a_{1} x+a_{0}$

Estrin method: the F (fusion) variant

Example : If $D=2^{\delta}+1$ then $x^{2^{\delta}}$ is computed "only" to multiply $a_{2 \delta}$ by it. Can we skip the head coefficient? Yes...

$$
p^{\prime}(x)=\left(a_{d} x+a_{d-1}\right) x^{d-1}+\cdots+a_{0}=a_{d-1}^{\prime} x^{d-1}+\cdots+a_{0}
$$

Generalization : split $p(x)$ with $\Delta^{\prime}=\lfloor\log (d+1)\rfloor-1$

\boldsymbol{d}	$p(x)$	$1 \mathrm{~d} \boldsymbol{d}=2^{\mathbf{8}}-1$ then $\Delta=\Delta^{\prime}($ Estrin $=F)$
2	$\left(a_{2} x+a_{1}\right) x+a_{0}$	
3	$\left(a_{3} x+a_{2}\right) x^{2}+a_{1} x+a_{0}$	
4	$\left(\left(a_{4} x+a_{3}\right) x+a_{2}\right) x^{2}+a_{1} x+a_{0}$	
5	$\left(\left(a_{5} x+a_{4}\right) x^{2}+a_{3} x+a_{2}\right) x^{2}+a_{1} x+a_{0}$	
6	$\left(\left(\left(a_{6} x+a_{5}\right) x+a_{4}\right) x^{2}+a_{3} x+a_{2}\right) x^{2}+a_{1} x+a_{0}$	
7	$\left(\left(a_{7} x+a_{6}\right) x^{2}+a_{5} x+a_{4}\right) x^{4}+\left(a_{3} x+a_{2}\right) x^{2}+a_{1} x+a_{0}$	
8	$\left(\left(\left(a_{8} x+a_{7}\right) x+a_{6}\right) x^{2}+a_{5} x+a_{4}\right) x^{4}+\left(a_{3} x+a_{2}\right) x^{2}+a_{1} x+a_{0}$	
\vdots	\vdots	

Estrin method: beyond F variant

Is F always convenient? As a_{d}^{\prime} size can be different, study again the basic case with different coefficient sizes.

Let $A y^{2}+B y+C$ be the expression to be evaluated.

$$
\begin{aligned}
R H & :(A \cdot y+B) \cdot y+C \\
E: & A \cdot y^{2}+B \cdot y+C
\end{aligned}
$$

Let $\operatorname{size}(y)=n, \operatorname{size}(A)=a, \operatorname{size}(B)=b$
Consider products and squares only:

$$
\begin{aligned}
E_{R H} & =M(a, n)+M(\max (a+n, b), n) \\
E_{E} & =S(n)+M(a, 2 n)+M(b, n)
\end{aligned}
$$

Estrin method: the BZ ("biasing zest") variant

We assume $M(\alpha, \beta)=L(\alpha+\beta)$. Two possibilities for $E_{R H}$:

1) $a+n \leqslant b$: then

$$
E_{R H} \simeq L(a+n)+L(b+n) \leqslant L(a+2 n)+L(b+n)+S(n) \simeq E_{E}
$$

\Rightarrow Ruffini-Horner is faster.
2) $a+n>b$: then

$$
E_{R H} \simeq L(a+n)+L(a+2 n)
$$

\Rightarrow If $S(n)$ has already been computed, one must compare $L(a+n)$ and $L(b+n)$: if $a \leqslant b, \mathrm{RH}$ is faster, otherwise Estrin is. It is fast to check the condition at run-time.

$$
\operatorname{size}\left(a_{i}\right)=64, \operatorname{size}(x)=65536=2^{16}
$$

Polynomial evaluation percentual time: Estrin/RH, BZ/RH, BZ/Estrin

$$
\operatorname{size}\left(a_{i}\right)=1048576=2^{20}, \operatorname{size}(x)=24576
$$

Threshold issues (ET variant)

It is not always convenient for Estrin to recurse too much, in particular when n is small.

Split $p(x)$ in $p_{i}(x)$ according to a threshold $1 \leqslant \tau \in \mathbb{N}$, to be possibly adjusted so to have a completely balanced case.

$$
p_{i}(x)=\sum_{j=0}^{\min \{d-i \tau, \tau-1\}} a_{i \tau+j} x^{i \tau+j} \quad ; \quad i=0, \ldots, d^{\prime}=\left\lceil\frac{d+1}{\tau}\right\rceil-1
$$

This way, $p(x)=\sum_{i=0}^{d^{\prime}} p_{i}(x)\left(x^{\tau}\right)^{i} \Longrightarrow$ (ET variant)
(1) first compute $a_{i}^{\prime}=p_{i}(x)$ with Ruffini-Horner
(2) then evaluate $y=x^{\tau}$ and $\sum_{i=0}^{d^{\prime}} a_{i}^{\prime} y^{i}$ with Estrin.

Polynomial evaluation
Estrin approach
Variants, unbalancedness, sparsity

Estrin variants: F and BZ

Thresholds and sparse polynomials Conclusions

(b) Coefficients and value : 64 bits - Threshold : 128

(c) Coefficients and value : 32 bits - Threshold : 200

(d) Coefficients and value : 64 bits - Threshold : 128

Dealing with "sparse" polynomials

Is this method general and effective?
\triangleright One may wonder if the method described here is fast also when most of the coefficients are zero.
\triangleright This is not a method specialised for sparse polynomials, but it performs pretty well anyway. For example, if we evaluate a monomial $a x^{d}$ with Estrin, we basically compute all $x^{2^{i}}$ and multiply the ones needed for the term x^{d}.
\triangleright On the next slide we show some timings obtained for binomials:

$$
a x^{r}+b x^{s}
$$

with the same code optimised for dense polynomials.

Polynomial evaluation
Estrin approach
Variants, unbalancedness, sparsity

Estrin variants: F and BZ
Thresholds and sparse polynomials Conclusions
(a) $\tau=125_{1}:=15$

(c) $r=128_{1} 8=58$

(c) $r=94, s=50$

(g) $r=39_{1}:=29$

(b) $r=125, s=97$

(d) $r=96,8=50$

(f) $r=47, s=25$

(h) $\boldsymbol{r}=100, s=95$

Conclusions

- We have shown that Estrin paradigm applied recursively or iteratively is very effective for polynomial evaluation in long integers; moreover, faster new variants have been presented, obtaining asymptotically better algorithms solving such a basic problem in algebra.
- Although the paper focus is on integers, the strategy described in this work can be more widely used, e.g. when the coefficients and the value are fractions, or polynomials. For this latter case (polynomial composition) a similar approach can also be found in (Hart, Novocin '11-to appear).
- In general, the straightforward Estrin's scheme, and possibly the ET and BZ variants, should be considered every time a polynomial evaluation involves values with powers that grow in size with the growing exponent and asymptotically fast multiplication algorithms are available.

That's all folks !

Questions?

Presentation will be available on the web:
http://bodrato.it/papers/\#SYNASC2011,
released under a CreativeCommons BY-NC-SA licence. @®@®

