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Long integer and polynomial evaluation
Some notation and costs

Problem: Evaluate a polynomial in a long integer x with |x | �1

p(x) =
d

∑
i=0

aix i ∈ Z[x ] : d = deg(p) ; D = d + 1.

Size of ai and x : ' [log2(ai)]' [log2(x)] = n

Consider two long integers with m, n digits in base-2
representation (bits), respectively:

Operation costs:

M(m,n) : multiplication M(n) = M(n,n)
A(m,n) : addition/subtraction A(n) = A(n,n)

One can assume A(m,n) = A(min(m,n))
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Polynomial evaluation
Costs

Ruffini-Horner : d multiplications, d additions

p(x) = ((· · ·((adx + ad−1)x + ad−2)x + · · ·)x + a1)x + a0

Motkin’55, Belaga’61, Pan’66 : by preconditioning, around
d/2 multiplications are sufficient
Paterson, Stockmeyer ’73 : O(

√
d) multiplications

Above complexities are measured just counting the number of
multiplications (i.e. considering every product having constant
cost). For “growing” factors (e.g. long integers), this is not
sufficient to understand global complexity.
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Evaluation of polynomials
Costs

Papers considering x and/or ai as long integers:

Akritas, Danielopulos ’80 : polynomial translation
Danielopulos ’82 : polynomial and derivatives evaluation

. . . but only “schoolbook” O(n2) multiplication is considered.

Actually there are many different subquadratic multiplication
methods. What happens if they are used ?
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Multiplication algorithms

Many algorithms are known for long integer multiplication.

Schoolbook O(n2)

Karatsuba (1962) O(nlog2 3)

Toom-Cook-k (1963) O(nlogk (2k−1))

Schönhage-Strassen (1971) O(n logn log logn)

Fürer (2007) O(n logn2log∗n)

Each one has a different complexity, and its own range where it
is the fastest one.

Balanced approach : factors have the same number of bits (n)
Unbalanced approach : m 6= n [B., Z. ’07 : Toom-(k + 1/2)]
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Detailing Ruffini-Horner method
Unbalanced multiplications appear

Ruffini-Horner⇒

i = d ; result = ai ;
while(i > 0) do

i← i - 1;
result← result · x ;
result← result + ai ;

result grows by ∼ [log2(x)] bits at every iteration
x does not grow︸ ︷︷ ︸

More and more unbalanced multiplication

Possibility of using subquadratic methods is not fully exploited/
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Estrin’s scheme (1960) - augmenting parallelism

Splits p(x) focusing on power of 2 exponents. Let ∆ = 2blog2 dc:

p(x) =

(
d

∑
i=∆

aix i−∆

)
x∆ +

(
∆−1

∑
i=0

aix i

)
= p1(x)x∆ + p0(x)

The same approach is applied recursively to p0(x) and p1(x).

d p(x)

2 (a2)x2 +a1x +a0
3 (a3x+a2)x2 +a1x +a0
4 (a4)x4+(a3x+a2)x2 +a1x +a0
5 (a5x+a4)x4+(a3x+a2)x2 +a1x +a0
6 ((a6)x2+a5x+a4)x4+(a3x+a2)x2 +a1x +a0
7 ((a7x+a6)x2+a5x+a4)x4+(a3x+a2)x2 +a1x +a0
8 (a8)x8+((a7x+a6)x2+a5x+a4)x4+(a3x+a2)x2 +a1x +a0
...

...
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Estrin’s scheme (example)

Two computations: 1) Products 2) Successive squares of x

Case d = 7 Products (and sums, too) Squares

a7 a6
↓ ↓

a5 a4
↓ ↓

a3 a2
↓ ↓

a1 a0
↓ ↓ ↙x

A(1)
3 = a7x + a6 A(1)

2 = a5x + a4 A(1)
1 = a3x + a2 A(1)

0 = a1x+a0 ↓
↘ ↙ ↘ ↙ ↙x2

A(2)
1 = A(1)

3 x2 +A(1)
2 A(2)

0 = A(1)
1 x2 +A(1)

0 ↓
↘ ↙ ↙x4

A(3)
0 = A(2)

1 x4 + A(2)
0

Products are now balanced.
Subquadratic methods can be more profitably applied,
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Ruffini-Horner (RH) versus Estrin

Compare multiplication complexities for evaluation:

ERH =
D−1

∑
i=1

M(in,n)'
D−1

∑
i=1

iM(n,n) = M(n)
D−1

∑
i=1

i = M(n)
D(D−1)

2

EE = E (p)
E + E (s)

E

With Toom-Cook methods
[
M(kn)' (2k −1)M(n)
S(kn)' (2k −1)S(n)

]
in Estrin’s scheme one obtains. . .
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Let α = logk (2k −1) and D = 2δ: product complexity

E (p)
E '

δ−1

∑
i=0

D
2i+1 (2k −1)M

(
2in
k

)
' D

2

δ−1

∑
i=0

(2k −1)

2i

2

M
(

2in
k2

)
' ·· ·

' D
2

δ−1

∑
i=0

(2k −1)h

2i M
(

2in
kh

)
=
[
kh = 2i ⇒ h = i logk 2

]
=

=
D
2

δ−1

∑
i=0

(2k −1)i logk 2

2i M(n) =

= M(n)
D
2

δ−1

∑
i=0

(
(2k −1)logk 2

2

)i

= [α = logk (2k −1)] =

= M(n)
D
2

(2α−1)δ−1
2α−1−1

= M(n)
D
2

Dα−1−1
2α−1−1
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Let α = logk (2k −1) and D = 2δ: squaring complexity

E (s)
E =

δ−2

∑
i=0

S(2in)'
δ−2

∑
i=0

(2k −1)S
(

2in
k

)
' ·· ·

'
δ−2

∑
i=0

(2k −1)hS
(

2in
kh

)
=
[
kh = 2i ⇒ h = i logk 2

]
=

δ−2

∑
i=0

[
(2k −1)logk 2

]i
S(n) = S(n)

δ−2

∑
i=0

(2α)i =

= S(n)
(2α)δ−1−1

2α−1
=

S(n)

2α−1

[(
D
2

)α

−1
]
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For the complexity of S(n) we can write S(n) = O(M(n))
the result is

ERH = O(M(n) ·D2)' O(Mquadratic(Dn))

EE = O(M(n) ·Dα)' O(Mfast (Dn))

Where α is the exponent given by the sub-quadratic
multiplication algorithm used.

If coefficients ai are “small” – O(1) bits – The product costs
slightly changes, but the order of magnitude doesn’t.

Next slide: timings using PARI/GP to compare performances
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Graphical comparison: Estrin/RH timings (%)
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Estrin convenience threshold (d = 2)

Basic case with Ruffini-Horner
[
(a2x + a1)x + a0

]
ERH = (M(n) + A(n)) + M(2n,n) + A(n)

'M(2n,n) + M(n) + 2A(n)

Estrin
[
a2(x2) + (a1x + a0)

]
asks instead for

EE = (M(n) + A(n)) + (S(n) + M(2n,n)) + A(2n)

'M(2n,n) + M(n) + 2A(n) + S(n) + A(n)

If we keep on assuming ai ' x , RH is better, for odd degrees.
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Estrin method: the F (fusion) variant

Example : If D = 2δ + 1 then x2δ

is computed “only” to multiply
a2δ by it. Can we skip the head coefficient?

p′(x) = (adx + ad−1)xd−1 + · · ·+ a0 = a′d−1xd−1 + · · ·+ a0

Generalization : split p(x) with ∆′ = blog(d + 1)c−1
If d = 2δ − 1 then
∆ = ∆′ (Estrin≡ F)

d p(x)

2 (a2)x2 +a1x +a0

3 (a3x+a2)x2 +a1x +a0

4 (a4)x4+(a3x+a2)x2 +a1x +a0

5 (a5x+a4)x4+(a3x+a2)x2 +a1x +a0

6 ((a6)x2+a5x+a4)x4+(a3x+a2)x2 +a1x +a0

7 ((a7x+a6)x2+a5x+a4)x4+(a3x+a2)x2 +a1x +a0

8 (a8)x8+((a7x+a6)x2+a5x+a4)x4+(a3x+a2)x2 +a1x +a0
...

...
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7 ((a7x+a6)x2+a5x+a4)x4+(a3x+a2)x2 +a1x +a0
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Estrin method: beyond F variant

Is F always convenient ? As a′d size can be different, study
again the basic case with different coefficient sizes.

Let Ay2 + By + C be the expression to be evaluated.

RH : (A ·y + B) ·y + C

E : A ·y2 + B ·y + C

Let size(y) = n, size(A) = a, size(B) = b

Consider products and squares only:

ERH = M(a,n) + M(max(a + n,b),n)

EE = S(n) + M(a,2n) + M(b,n)
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Estrin method: the BZ (“biasing zest”) variant

We assume M(α,β) = L(α + β). Two possibilities for ERH :
1) a + n 6 b : then

ERH 'L(a + n) + L(b + n) 6 L(a + 2n) + L(b + n) + S(n)'EE

⇒ Ruffini-Horner is faster.

2) a + n > b : then

ERH ' L(a + n) + L(a + 2n)

⇒ If S(n) has already been computed, one must compare
L(a + n) and L(b + n): if a 6 b, RH is faster, otherwise Estrin is.
It is fast to check the condition at run-time.
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size(ai ) = 64, size(x) = 65536 = 216
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size(ai ) = 1048576 = 220, size(x) = 24576
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Threshold issues (ET variant)

It is not always convenient for Estrin to recurse too much, in
particular when n is small.

Split p(x) in pi(x) according to a threshold 1 6 τ ∈ N, to be
possibly adjusted so to have a completely balanced case.

pi(x) =
min{d−iτ,τ−1}

∑
j=0

aiτ+jx iτ+j ; i = 0, . . . ,d ′=
⌈

d + 1
τ

⌉
−1

This way, p(x) =
d ′

∑
i=0

pi(x)(xτ)i =⇒ (ET variant)

1 first compute a′i = pi(x) with Ruffini-Horner

2 then evaluate y = xτ and
d ′

∑
i=0

a′iy
i with Estrin.
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Dealing with “sparse” polynomials
Is this method general and effective?

� One may wonder if the method described here is fast also
when most of the coefficients are zero.

� This is not a method specialised for sparse polynomials,
but it performs pretty well anyway. For example, if we
evaluate a monomial axd with Estrin, we basically compute
all x2i

and multiply the ones needed for the term xd .
� On the next slide we show some timings obtained for

binomials:
ax r + bxs

with the same code optimised for dense polynomials.
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Conclusions

We have shown that Estrin paradigm applied recursively or
iteratively is very effective for polynomial evaluation in long
integers; moreover, faster new variants have been presented,
obtaining asymptotically better algorithms solving such a basic
problem in algebra.

Although the paper focus is on integers, the strategy described
in this work can be more widely used, e.g. when the coefficients
and the value are fractions, or polynomials. For this latter case
(polynomial composition) a similar approach can also be found
in (Hart, Novocin ’11 - to appear).

In general, the straightforward Estrin’s scheme, and possibly the
ET and BZ variants, should be considered every time a
polynomial evaluation involves values with powers that grow in
size with the growing exponent and asymptotically fast
multiplication algorithms are available.
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That’s all folks !

Questions ?
Presentation will be available on the web:
http://bodrato.it/papers/#SYNASC2011,

released under a CreativeCommons BY-NC-SA licence.

http://bodrato.it/papers/#SYNASC2011
http://creativecommons.org/licenses/by-nc-sa/3.0/
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